Xbaset™

for Windows 95
WindowsNT

B a s 1 ¢] s e r =« G u 1 d

Alaska Software, Inc.

743 Horizon Court, Suite 107
Grand Junction CO 81506
USA

Alaska Software GmbH
Hauptstr. 71-79

65760 Eschborn/Frankfurt
Germany

January 1998
Printed in Germany

Copyright © 1997-98, Alaska Software GmbH. All rights reserved. Xbase++, DMLB, XBP are trademarks or

registered trademarks of Alaska Software GmbH, Eschborn/Frankfurt.

All trademarks appearing in this d ion are trads ks or regi d trademarks of the respective companies.

This documentation as well as the soﬁwm'e described herein is delivered under license and may only be used or copied according to the
license ion serves as a source of information and may be subject of change without notice.

“Alaska Software neither takes responsibility nor any liability for errors or inaccuracies in this documentation.

Alaska Xbase* * Basic Users Guide

LICENSE AGREEMENT

Please read this license agreement carefully before you open the sealed media package. By opening the media package, you agree to
be bound by the terms of this agrcement. If you do not accept the terms of this agreement, promptly return the unopened package and
accompanying items together with proof of payment to the place of purchase for a full refund.

License

Alaska Xbase** (referred to as the SOFTWARE) is a 32bit compiler designed for the operating systems Windows 95/Windows NT. It
includes full online documentation and supplementary printed documentation. Alaska Software grants you a license to use the
SOFTWARE and its documentation under the following conditions:

1.) Use of the SOFTWARE

a.) You may use the SOFTWARE only on a single computer. If you run the SOFTWARE on client workstations in a multi-user
network, you must obtain a license for each client workstation. This applics also when the SOFTWARE is changed by you and/or
merged into another computer program. The SOFTWARE is in “use* when it is loaded into memory (RAM) or is stored on a single
hard disk.

b.) The unchanged, changed or merged SOFTWARE may be copied solely for the purpose of installing it or to make a backup or
archive copy.

c.) Other usage of the SOFTWARE does not comply with the license agreement.

d.) Executable programs implemented with the SOFTWARE are free of royalties and copyrights of Alaska and may be distributed to
other parties. Any part of the SOFTWARE that is required to run your executable program is also free for distribution. This applies
to the following DLL files shipped with the SOFTWARE: XPPRT1.DLL, XPPUIL.DLL, XPPUI2.DLL, XPPNAT.DLL,
DBFDBE.DLL, NTXDBE.DLL, SDFDBE.DLL and DELDBE.DLL.

e.) It is strictly prohibited to disassemble, decompile or reverse engineer the SOFTWARE.

2.) Copyright

Alaska Software and its suppliers are the owners of the SOFTWARE. The SOFTWARE is copyrighted and all rights are reserved by
Alaska Software. As far as the rights of suppliers are concerned, Alaska Software has obtained licenses to deliver their software
together with the SOFTWARE. Therefore, you must treat the SOFTW ARE like any other copyrighted material.

a.) Any part of a computer program you have developed that contains parts of sample programs delivered with the SOFTWARE must
carry the original Alaska Software copyright remark.

b.) Any part of a computer program you have developed using the SOFTWARE must carry your personal copyright remark:

© Copyright (your name) (year). All rights reserved.

c.) You may not copy any printed material accompanying the SOFTWARE

3.) Transfer of the license

a.) You may transfer your license of the SOFTWARE to another person if he/she agrees with point 1.) and 2.)

b.) Renting or leasing of this license is not permitted.

¢.) With the transfer of your license you loose all rights to use the SOFTWARE. All copies or merged programs have to be transferred
with the license or have to be destroyed.

4.) Limited Warranty

The SOFTWARE is delivered as is. It is not guaranteed to be free of defects or to include specific features you might require. Alaska
Software warrants that the SOFTWARE will perform substantially in accordance to the accompanying documentation, and that the
media on which the SOFTWARE is furnished will be free of defects in material and workmanship for a period of 90 days from the date
of receipt.

Alaska Software does not accept any liability for damages resulting from defects in the SOFTWARE. The user is obliged to protect,
defend, hold harmless and indemnify Alaska Software at his/her expense from and against any and all claims, suits, actions, legal
proceedings, demands, damages, liabilitics, losses, judgements, settlements, costs and expenses, including costs of investigation, court
costs and attorneys fces, arising out of or in connection with any alleged or actual claim.

5.) Customer remedies

Alaska Software’s liabilitics and your exclusive remedies shall be at Alaska Software’s option:
a.) return of the money paid to purchase the SOFTWARE

b.) receipt of a revised version of thce SOFTWARE

6.) Export restrictions
You agree to comply with all applicable US and European laws and the laws of your country as well as to regulations and ordinances
related to the export of technical products, especially software.

1)

Alaska Xbase * Basic Users Guide

Contents

1. Installation

1.1. Removing previous Xbase** installations

1.2. Starting the installation program

1.3. Typical installation

1.4. Custom installation

1.5. Before you move on
1.5.1. Windows 95 environment limit
1.5.2. Working with Xbase* and Clipper

2. After Installation

2.1. Your first steps with Xbase**
2.1.1. Executing sample programs
2.1.2. Viewing source code
2.1.3. Running sample programs in the debugger
2.1.4. Rebuilding sample programs
2.2. The next steps with Xbase*
2.3. Online help system
2.3.1. To search for information
2.3.2. Accelerator keys in the help system
2.4. Xbase** quality assurance
2.4.1. How to contact Alaska
2.4.2. How to report problems
2.4.3. The PDR form
2.4.4. What happens with PDRs

3. Deployment of Xbase** applications

4. Information for Clipper Programmers

4.1. Differences in the preprocessor and compiler
4.2. Differences between Clipper '87 and Xbase**
4.3. Differences between Clipper 5.x and Xbase*
4.4. New functions in Xbase** (unknown in Clipper)
4.5. Differences between Class(y) and Xbase*

4.6. Using the mouse

5. The Xbase** FormDesigner - XPPFD.EXE

5.1. Components of the FormDesigner
5.2. Working with the FormDesigner
5.3. FUNCTION Code

5.4. CLASS Code

5.5. Using CLASS Code

SO OO II

—

11
12
12
12
12
13
14
14
15
16
16
16
17
18

19

20

20
24
25
33
38
40

41

41
43
44
49
54

Alaska Xbase* * Basic Users Guide

6. The Xbase** compiler - XPP.EXE

6.1. Compiler switches
6.2. Examples for the Xbasc** compiler
6.3. Version information

7. The Xbase** Debugger - XPPDBG.EXE

7.1. Basics of the debugger

7.2. The menu system of the debugger
7.2.1. File menu
7.2.2. Run menu
7.2.3. Monitor menu
7.2.4. Commands menu
7.2.5. Options menu
7.2.6. Help menu

7.3. Working with the debugger
7.3.1. Setting breakpoints
7.3.2. Inspecting errors

8. The Xbase** ProjectBuilder - PBUILD.EXE

8.1. Creating a project file (XPJ file)

8.2. Creating a project

8.3. The [PROJECT] section in an XPJ file
8.4. User-defined sections in an XPJ file
8.5. Options for PBUILD.EXE

9. The Alaska Linker - ALINK.EXE

9.1. Calling the linker from the command line
9.2. Linker options

9.3. Environment variables for the linker

9.4. Creating DLL files

9.5. The utility program AIMPLIB.EXE

10. The Alaska Resource Compiler - ARC.EXE
10.1. Declaring external resources -The ARC file
10.2. Directives for ARC.EXE
10.3. Options for ARC.EXE

11. Basics of Database Programming

11.1. What is a database

11.2. Creating a database

11.3. Saving data

11.4. Work area and Alias

11.5. The work space of Xbase**

11.6. Record pointer and database fields

57

57
63
64

65

65
66
66
67
68
69
69
70
70
71
71

73

73
75
76
77
78

80

80
81
83
83
87

88

88
89
90

91

91
92
94
96
99
102

Alaska Xbase - Basic Users Guide

12. The Xbase* DatabaseEngine

12.1. Basics of DatabaseEngines
12.2. DatabaseEngines and programming language
12.3. Determine information about DatabaseEngines
12.3.1. The function Dbelnfo()
12.3.2. The function DbInfo()
12.3.3. The function FieldInfo()
12.4. Specifications of the DatabaseEngines - file formats
12.4.1. SDFDBE (DATA component)
12.4.2. DELDBE (DATA Component)
12.4.3. DBFDBE (DATA component)
12.4.4. FOXDBE (DATA component)
12.4.5. NTXDBE (ORDER component)
12.4.6. CDXDBE (ORDER component)

13. Multi-tasking and Multi-threading

13.1. Start multiple processes - multi-tasking
13.2. Using multiple threads
13.2.1. Execution paths in a program
13.2.2. Visibility of variables in threads
13.2.3. Priorities of threads
13.2.4. Getting information about threads
13.2.5. Thread objects know the time
13.2.6. (De)Initialization routines for Threads
13.2.7. User-defined Thread classes
13.2.8. Controlling threads using wait states
13.2.9. Controlling threads using signals
13.2.10. Mutual exclusion of threads

14. User Interface and Dialog Concepts

14.1. Applications in character mode (VIO mode)
14.1.1. Unformatted input and output
14.1.2. Formatted input and output
14.1.3. Keyboard and mouse
14.1.4. The default Get system
14.1.5. Modification of the Get system
14.1.6. Display of tables

14.2. Applications in graphics mode (GUI mode)
14.2.1. Basics of Xbase Parts
14.2.2. Windows and relationships
14.2.3. XbpCrt() - The window for hybrid mode
14.2.4. XbpDialog() - The window for GUI mode
14.2.5. Class hierarchy of Xbase Parts
14.2.6. DataRef() - The connection between XBP and DBE

104

104
107
108
109
111
112
114
114
119
126
133
136
137

139

139
141
141
143
145
146
146
148
148
150
151
151

155

155
155
157
158
163
165
168
170
170
177
180
183
187
188

Alaska Xbase ' ' Basic Users Guide

14.3. Creating GUI applications
14.3.1. Tasks of AppSys()
14.3.2. The menu system of an application
14.3.3. Tasks of the Main procedure
14.3.4. A DataDialog class for integrating databases
14.3.5. DataDialog and data entry screens
14.3.6. Program control in dialog windows

15. The Xbase* Graphics Engine (GRA)

15.1. Basics for graphic output

15.2. Graphic primitives

15.3. Attributes for graphic primitives

15.4. Graphic segments

15.5. Graphic paths

15.6. Graphic transformations and raster operations

16. Presentation Spaces for Graphic Output

16.1. Coordinate system and view port

16.2. The intelligent presentation space - XbpCrt:presSpace()
16.3. The high speed presentation space - Xbp:lockPS()

16.4. The complete presentation space - XbpPresSpace()

17. Graphic output devices

17.1. The printer - XbpPrinter()

17.2. The metafile - XbpMetaFile()

17.3. The raster image - XbpBitmap()

17.4. Using windows as output devices

17.5. Output to window and printer - WYSIWYG

18. Error Handling Concepts

18.1. Offensive and defensive error handling

18.2. Use of error objects
18.3. Default error handling - ERRORSYS.PRG and XPPERROR.LOG

191
191
194
200
202
216
220

224

224
226
227
233
235
237

241

241
244
245
246

247

247
251
253
256
259

264

264
266
269

Alaska Xbase Basic Users Guide

Installation

1. Installation

This chapter describes the installation process of your Xbase** development package. It also
provides you with important information about the system environment and configuration.

1.1. Removing previous Xbase* * installations

If you have a version of Xbase** already installed, you should uninstall this software via the
software control panel:

Click the Start button

Select Settings -> Control panel

Click the icon Add/remove programs

Select Xbase* from the list in the Install/Uninstall tab page

Note that the uninstall program can only remove installed files. It does not remove files
created after installation, such as OBJ or EXE files in the .\SAMPLES directory, for
example. If such files exist, a warning message is displayed stating that the program could not
be removed. In this particular case, you can ignore the message.

When a previous version is removed, you should check the PATH, LIB and INCLUDE
entries in the AUTOEXEC.BAT (Windows95) or in the registry key
HKEY_CURRENT_USER\Environment (WindowsNT), respectively, for old values.

After a new installation, you have to recompile all the programs which you have compiled
with a previous Xbase** version.

1.2. Starting the installation program

Insert the CD in the CD-ROM drive and change to the directory \ENG to install the
international version of Xbase**. The program SETUP.EXE is found in this directory. It
installs Xbase** and guides you through the installation procedure prompting you for Typical
or Custom installation.

Note: The Xbase** installation does not change or replace any system DLL files. All DLL
files required by Xbase* are stored in newly created directories.

Alaska Xbase* * Basic Users Guide 7

Typical installation

1.3. Typical installation

The Xbase** development package is installed by default on drive C: with
\ALASKA\XPPW32\ as the root directory <ROOT>:

<ROOT>

+--BIN Compiler and service programs

+--BOOK Online help

+--LIB Runtime library

+--INCLUDE #include files

+--RESOURCE Resource files

+--RUNTIME Runtime libraries

+--SOURCE Source code
+--SYS Source for System level files
+--COMPAT Compatibility functions for Clipper '87
+--SAMPLES Example programs

During installation your system configuration is changed to reflect the new directories. For
Windows NT, the changes are applied to the registry database under
\HKEY_CURRENT_USER\Environment, while AUTOEXEC.BAT is changed for Windows
95. The following registry keys or environment variables, respectively, are modified or
created if missing:

PATH = C:\ALASKA\XPPW32\BIN;C:\ALASKA\XPPW32\LIB;
LIB = C\ALASKA\XPPW32\LIB;
INCLUDE = C:\ALASKA\XPPW32\INCLUDE;

XPPRESOURCE = C:\ALASKA\XPPW32\RESOURCE;

Default file associations are defined for PRG, CH, XPJ and XFF files during a typical
installation. Use custom installation to suppress this automatic feature.

8 Alaska Xbase* * Basic Users Guide

Custom installation

1.4. Custom installation

With custom installation, you can select individual components of the Xbase* package to be
installed. Also, the definition of file associations can be selected individually.

CH Include files are associated with Window's Notepad and the Xbase** compiler. The
compiler performs a syntax check for a CH file when invoked.

PRG Source code files are associated with Window's Notepad and the Xbase** compiler.
A PRG file is compiled.

XFF Form definition files are associated with the Xbase** FormDesigner.

XPJ Xbase** Project files are associated with the ProjectBuilder. A left double click on
an XPJ file builds a project.

Note: The file XPP.REG is available in the root directory of the Xbase** installation. If file
associations are not defined during installation they can be defined later by importing
XPP.REG to the Windows registry using REGEDIT.EXE. Default file associations can also
be changed by editing the XPP.REG file. For example, if you want source code files to be
associated with the editor of your choice, replace the string "notepad.exe” in XPP.REG with
the name of your editor and import the changed file to the registry.

Be aware that XPP.REG contains a snapshot of HKEY_CURRENT _USER\Environment as is
before you install Xbase**. If you change the registry later by installing other software, for
example, these changes are not reflected in XPP.REG. Before you import XPP.REG into the
registry, make sure that HKEY_CURRENT_USER\Environment is correct or remove this
section entirely from the XPP.REG file.

1.5. Before you move on

If you have installed Xbase** under Windows 95 or work with both Clipper and Xbase** on
the same workstation, please read the following sections before you start using Xbase**.

1.5.1. Windows 95 environment limit

In Windows 95 the space for environment variables is limited to 1024 bytes by default. This
can lead to problems when many paths are defined in AUTOEXEC.BAT pointing to
numerous directories. If the memory space for environment variables is exhausted, it is most
likely that paths are not defined completely or are not available in the system's environment at
all. This is also the case if all paths are listed correctly in AUTOEXEC.BAT, since the
environment table is full. When you encounter system error messages like "not sufficient
environment space” you must increase the size of the environment table using the SHELL

Alaska Xbase* * Basic Users Guide 9

Working with Xbase* - and Clipper

statement in your CONFIG.SYS file. The following line is an example that sets the
environment space to 2048 bytes:

SHELL=C:\win95\command.com C:\win95 /E:2048 /P

Note that C:\win95 is only an example where the command processor COMMAND.COM is
located. It can be in a different directory on your computer.

1.5.2. Working with Xbase*+ and Clipper

Xbase** needs system environment variables to be set correctly. This includes PATH,
INCLUDE, LIB and XPPRESOURCE which are defined during default installation.
However, if you work with Clipper on the same computer, there can be a conflict with the
INCLUDE path. Both compilers search this path for include files. Also, both products use the
same include file names such as STD.CH, for example, but the file contents differ to a great
extent. Therefore, it is necessary that the INCLUDE path points to the correct include
directory when you invoke either compiler.

A clear indication of a wrong include file being used is given when the Xbase* linker reports
an unresolved external function which begins with two underscores (for example:
__SetFormat(), __Quit(), __Keyboard()). These function calls occur only if Clipper's
STD.CH file is included. In general, there are no functions in Xbase** which begin with a
double underscore.

Switching the environment

In order to change the system environment settings for Xbase* or Clipper more easily, two
batch files are available after installation: DINO.BAT and AUTOXPP.BAT. The file
DINO.BAT is located in the root directory of your C: drive and AUTOXPP.BAT is found in
the root directory of the Xbase** installation. DINO.BAT contains a pre-installation snapshot
of the required environment variables and restores the system settings when invoked, while
AUTOXPP.BAT sets the search paths for Xbase*. The two batch files, therefore, set the
environment variables appropriate for Xbase** or Clipper and let you switch the environment
for either compiler on the fly.

Alaska Xbase "+ Basic Users Guide

After Installation

2. After Installation

This chapter gives a short overview of how you can best get started working with Xbase**. In
addition, tips on how to obtain information about Xbase** not included in this introductory
documentation are given here.

2.1. Your first steps with Xbase*+

The easiest way to get a quick overview about Xbase** and its features is to review sample
programs that come along with Xbase*. There is a variety of programming examples
installed in the .\SOURCE\SAMPLES directory which cover numerous different aspects.
The example programs are divided up into four categories and are quickly reached by
clicking the Start button -> Programs -> Alaska Xbase* -> Xbase** samples. This opens the
Samples folder which again lists four folders, each of which contains samples of one
category:

Apps This category contains stand alone applications made up from
multiple PRG source code files. Each application targets program
design, like Single or Multiple Document Interfaces, for example.

Basics Each example program in the Basics category focuses on one
particular feature of Xbase**. The samples are not intended for reuse
but rather, show programming techniques which solve a particular
problem. "How to display text using an italic font?", "How to create a
modal window?" or "How to use a thread?" are questions answered
by samples in this category.

Migrate Migrating Clipper code to GUI is one of the strengths of Xbase**.
Therefore, samples are included in this category which show various
possibilities and intermediate steps in the transition of a text mode
application to a full featured GUI application.

Solution This category collects example programs which provide solutions to
common programming problems. All of them are stand-alone
programs. However, they include program code which implement a
test scenario for the actual example. The example is ready for reuse in
your programs when you discard the code for the test scenario.

Examples in the Migrate folder provide a good starting point when you have installed Xbase** for
the first time. So open this folder and click on Login. Now you can actually see the contents of the
directory .\SAMPLES\SOURCEWMIGRATE\LOGIN which contains different file types. The file
types are identified by the file extension and visualized by different icons.

Alaska Xbase* * Basic Users Guide 11

Executing sample programs

2.1.1. Executing sample programs

Each sample directory includes the PRG source code and the corresponding executable file.
Just double-click on the EXE file's icon to see what an example program does. You will find
three EXE files in the Login folder: LOGIN_T.EXE, LOGIN_H.EXE and LOGIN_G.EXE.
They all do the same (displaying a login dialog and a company logo), but they do it in
different ways. LOGIN_T.EXE is a text mode application, LOGIN_H.EXE adds graphical
elements to the text mode application and LOGIN_G.EXE is a GUI solution of the same
problem. These three programs give you insight into some unique features of Xbase**.

2.1.2. Viewing source code

When you have seen what an example program does, you might want to know how it is
programmed. For this, you only need to double-click the PRG file's icon. This starts a text
editor which loads the PRG file. By default, Windows' Notepad is started to display the PRG
file. Note that each time you double-click a PRG file, a new instance of the editor might get
started. If this is the case, you can drag a PRG file icon with the right mouse button and drop
it on the editor. This way, the editor is not started again. Instead, it only loads the
corresponding PRG file.

2.1.3. Running sample programs in the debugger

After studying the source code of an example program, you may still have questions about it.
In this case, it is worth following the program by stepping through it in the debugger. You
can start the debugger from the Start button -> Programs -> Alaska Xbase* -> Xbase**
debugger. Once the debugger is up and running, you can drag an EXE file's icon with the
right mouse button and drop it on the debugger window. Then you must click the OK
pushbutton in the startup screen of the debugger to be able to step through the program with
the F8 key. Note that you can invoke the debugger from the command line as well. This is
described in a separate chapter later in this book.

2.1.4. Rebuilding sample programs

Once you have understood a sample program of your choice, you will probably want to play
around with it and apply changes to see what happens if you change this or that in the PRG
file. To see the results of changes, you must rebuild the corresponding EXE file. This is
accomplished by double-clicking the icon of the PROJECT.XP]J file with the left mouse
button. This invokes the Xbase** ProjectBuilder which rebuilds the EXE (refer to the chapter
The Xbase** ProjectBuilder - PBUILD.EXE for more information).

Alaska Xbase * * Basic Users Guide

The next steps with Xbase ' *

2.2. The next steps with Xbase*+

Once you have seen the example programs, you will have a good impression of the features
of Xbase**. After this, where to go and how to proceed is up to you. You are well-advised to
read the entire introductory documentation, but making further recommendations depends on
your programming background and the language you have used so far. Xbase** has an online
documentation which is a huge source of information for answering almost any question. It is
designed to be understood by a novice as well as an advanced programmer. Depending on
your programming experience, you will find below some directions where to look in the
online help for more and appropriate information. Maybe you can identify yourself with one
of the following programmer types:

I've never used an xBase language

When you don't know anything about the xBase language, you should get familiar with its
concepts. See the following chapters in the online help:

*

Language Elements of Xbase++

Elements of an Xbase++ Program

Data Types and Literals

Operators

Declarations and Statements

Operations and Operators for Simple Data Types
Procedures, Functions and Special Operators
Operations and Operators for Complex Data Types

E I A

*

I know the xBase language but have never used Clipper

If you are familiar with other xBase dialects such as FoxPro or dBase, for example, you
should get a grasp about things possible in Xbase*. This includes the declaration of lexically
scoped variables as well as data types such as Code block, Array and Object. You might be
interested in the preprocessor too, since it can be used to translate your existing code to valid
Xbase** syntax. Have a look at these chapters in the online help:

Declarations and Statements

Operations and Operators for Simple Data Types
Operations and Operators for Complex Data Types
The Xbase++ Preprocessor

Error Handling Concepts

* %k %k

Make yourself familiar with the functions and commands available in Xbase**. You will find
them listed in alphabetical order when you open the Table of Contents tab in the online help.

Alaska Xbase* * Basic Users Guide 13

Online help system

I am a Clipper programmer

If you are a Clipper programmer, you should read the chapter "Information for Clipper
programmers" in this book. It gives you head start information about migration issues.

I know Clipper but I don't know GUI

If you are a Clipper programmer who wants to migrate existing code to Windows, you should
be familiar with the sample programs in the Basics and Migrate directory. Also, read the
chapter "User Interface and Dialog Concepts" in this book. You should obtain a working
knowledge of the following functions as well (you will find them in the index of the online

help)

AppEvent ()
PostAppEvent ()
SetAppWindow ()
XbpCrt ()
XbpDialog ()

L A .

I have programmed Windows GUI applications already

You are familiar with the event-driven programming approach and you are not afraid of
object-oriented programming. If this is the case, you should get familiar with the concept of
Xbase Parts. They let you use GUI controls easily. Also, Xbase™'s multi-threading features
are of interest for you. Read these chapters in this book:

* Basics of Xbase Parts

* Class hierarchy of Xbase Parts
* Multi-tasking and multi-threading

2.3. Online help system

Xbase* includes a comprehensive Windows online help .\BOOK\XPPREF.HLP. It is
invoked via the Start button or by typing WINHLP32 XPPREF on the command line or by
clicking the respective icon in the Xbase* folder or the Windows explorer.

2.3.1. To search for information

If you are looking for a particular piece of information and don't know where to find it, try
using the powerful search facilities provided by WINHLP32.EXE. The help file provides
four ways to search for information:

Table of contents The table of contents shows a hierarchical structure of all help
panels. The first section Xbase** Basics provides basic knowledge
about features and programming concepts while other sections
point to reference parts of the documentation. The Xbase** Basics

Accelerator keys in the help system

Index

Full text search

Quick reference

section is recommended for getting fundamental information about
Xbase*.

The index tab page provides fastest access to a particular help
topic. If you know the name of the function or command you are
looking for, type it in this tab page and press the Return key.

The full text search lets you search for a particular word in the
entire documentation. All help panels which contain the specified
word are listed. When this search option is used for the first time,
WINHLP32.EXE asks for the creation of a word list for
referencing help panels. This takes some time and creates the file
XPPREF.FTS. Once this file is created, the full text search feature
is available.

The quick reference is a special feature of the Xbase* online help.
It is invoked by clicking the QuickRef pushbutton in a help panel
or by pressing Alt+Q. Then a window is displayed which lists help
topics in alphabetical order.

There are two Quick Reference windows. One lists functions and
commands, while the other lists instance variables and methods.
At the top of each Quick Reterence window, a pushbutton 1s
displayed which toggles both windows (Toggle QuickRef).

2.3.2. Accelerator keys in the help system

Accelerator keys are added to the Xbase** online help to obtain fast access using the
keyboard rather than the mouse.

Alt+C Activates the Table of Contents tab page
Alt+Q Opens the Quick Reference window
Alt+S Accesses the Full Text Search

Alt+X Activates the Index tab page

Alt+Y Opens the History window

Ctrl+PgDn Displays Next help topic

Ctrl+PgUp Displays Previous help topic

Alaska Xbase* + Basic Users Guide

Xbase * quality assurance

All quick selections are also available in the context menu. It appears when clicking the help
window with the right mouse button or by pressing the Ctrl+Return keys.

2.4. Xbase** quality assurance

For quality assurance of its products, Alaska Software uses a defect tracking system for the
following up and fixing of known bugs and anomalies. The "defect database” is used to
collect information reported by registered users and route the information directly to the
concerned department or even a single developer's desk. This allows for a short response time
between bug report and bug fix.

2.4.1. How to contact Alaska

If the online help cannot answer your questions, our technical support will be glad to assist
you and help solve your problems. Please use one of the following possibilities to contact our
technical support:

E-Mail address for customers in Europe, Middle East, Africa:
support@de.alaska-software.com
E-Mail address for customers in America, Asia, Pacific, Australia:

support@us.alaska-software.com

CIS Forum: GO ALASKA
FAX: (+49) 6196/95 72 22
Phone: (+49) 6196/95 72-0

2.4.2. How to report problems

Problem Description Reports (PDR) are used to report problems to Alaska. If you find an
anomaly in the product, please use the form on the next page to include all possible
information about the defect and fax it to Alaska Software. You can also use the PDR.TXT
file which is located in the root directory of your Xbase* installation and send it via eMail to
our technical support. Sending an eMail is the preferred way because the PDR.TXT form can
automatically be transferred into the defect tracking system.

Alaska Xbase* * Basic Users Guide

The PDR form

2.4.3. The PDR form

#HH#H A< PDR status - this is filled in by ALASKA >#########
PPN.: PDR ID: REF No:

Status : Severity:

BHARH AR AR H BB < Customer data >HEHHHERHURBEAHBHAHERARRIY

Customer RegNo.: CIS ID: Date: _ .__ .

Version: 1.1.153 / Windows

Company / Sender :

Person to contact:

RAEAHRBHRAABARRAAH B < Categories >HHHHHHHHHHA R HH B BB HHH B RSN

Online help [] Function/Command [] Xbase Part []
Preprocessor [] Object/Method [] Graphic [
Compiler [] Database [] Other []

Attached file(s):

Remarks

HiHHHHHH R < Comprehensive description >H###4H#HSE A HHHAHAHHH

HHESHHHAHHH AR H AR < End SHEHREEHHAHHHHH 00000000 R BB R Y

Alaska Xbase* * Basic Users Guide

What happens with PDRs

2.4.4. What happens with PDRs

When you report a problem, it will be classified. If the problem is unknown so far and can be
reproduced, it will be approved by the technical support. The problem then gets assigned a
PDR-ID which identifies the problem for follow-up.

You will be notified by eMail if your reported problem is approved. Technical support will
then provide you with information about how to work around the problem, if this is possible.
All approved PDRs will be published frequently (approx. on a bi-monthly basis) in the
ALASKA forum on CompuServe.

Note: We greatly appreciate any contribution that helps to improve the product and its
robustness. However, if you want to contribute your experiences, you must be a registered
user. Without a registration number, a PDR-ID cannot be assigned to a problem report.

Alaska Xbase* * Basic Users Guide

Deployment of Xbase' * applications

3. Deployment of Xbase+*+ applications

Executable programs created with Xbase** may be installed on other computer systems
according to the license agreement you have with Alaska Software. Installation requires the
EXE file plus Xbase* runtime libraries to be copied to another workstation. The runtime
libraries are contained in DLL files which are located in the RUNTIME directory of your
Xbase** installation. Which DLL file to copy depends partly on which DatabaseEngine is
used by the EXE. The following table lists all files possibly required:

Files necessary to run Xbase** applications

File Description

XPPRT1.DLL 1) Main runtime library of Xbase**
XPPUI1.DLL 1) Events and Xbase Parts

XPPNAT.DLL 1) Country-specific library (nation module)
SOM.DLL 1) IBM SOM 2.0 runtime library

XPPUI2.DLL 2) Application Parts and XbpBrowse
DBFDBE.DLL 2) DatabaseEngine for DBF files
FOXDBE.DLL 2) DatabaseEngine for FoxPro compatible DBF files
DELDBE.DLL 2) DatabaseEngine for files in Delimited format
SDFDBE.DLL 2) DatabaseEngine for files in SDF format
CDXDBE.DLL 2) DatabaseEngine for CDX files
NTXDBE.DLL 2) DatabaseEngine for NTX files

1) compulsory 2) optional

All DLL files marked with 1) in the table must be copied together with the EXE to another
workstation. Otherwise the executable progam cannot be loaded into memory. The files
marked with 2) are only necessary if the functionality of the respective DLL is requested by
the EXE. The DLL files must be copied to a directory which is listed in the PATH
environment variable. If the directory is not part of PATH, you must modify this environment
variable accordingly.

Note: The table above lists all files of Xbase* that are free for distribution to your customers.
All files created by Xbase* are also free for distribution (Please comply with the license
agreement).

Alaska Xbase " * Basic Users Guide 19

Information for Clipper Programmers

4. Information for Clipper Programmers

This chapter provides information for programmers planning to port existing Clipper
applications to Xbase**. Although Xbase** is based on the Clipper language, certain
differences exist due to compiler technology and differences between DOS and a 32bit
operating system.

4.1. Differences in the preprocessor
and compiler

The results of the Xbase** and Clipper preprocessors and compilers differ in some very
special situations. The following code examples show some situations where the Clipper
preprocessor or compiler deviates from the Xbase** preprocessor or compiler.
Command options
Using reserved function names as options in user-defined commands can lead to problems
with the preprocessor in Xbase**. For example:
#command @ <row>, <col> MYCOMMAND <expr> [MIN <min>] [MAX <max>] ;

=> MyFunction(<row>, <col>, <expr>, <min>, <max>)
This command is translated correctly unless the function Min() or Max() is used for the
optional parameters <min> and <max>. The following would not be permitted in Xbase*:
@ 10,20 MYCOMMAND "DoSomething" MIN Min (10, x)
In this case, the keyword used as part of the option of the command is identical to the
keyword for the optional parameters. This is not permitted in Xbase*.
Numeric constants

Numeric constants can be programmed in Xbase** using decimal, hexadecimal or scientific
notation. Clipper understands only decimal notation. The following constants are valid in

Xbaset*:
3.1415926 // decimal
0xFF // hexadecimal
10.1E-10 // scientific

20 Alaska Xbase * * Basic Users Guide

Differences in the preprocessor and compiler

PARAMETERS statement

With the PARAMETERS statement, the Xbase** compiler is more strict than Clipper. The
statement is used to declare formal parameters for functions or procedures as variables of the
PRIVATE storage class (Clipper '87). Since PARAMETERS is an executable statement, it
may only be used after lexical variable declarations like LOCAL or STATIC. For example:

// Permitted
PROCEDURE MyProc
LOCAL cString
PARAMETERS pl, p2

<Code>
RETURN

// Not permitted
PROCEDURE MyProc
PARAMETERS pl,
LOCAL cString

p2

<Code>
RETURN

Note: In Xbase**, formal parameters should not be declared using PARAMETERS. Instead, a
comma-separated list of parameters should be written within parentheses when declaring

procedures, functions or methods:

PROCEDURE MyProc(pl, p2)
LOCAL cString

<Code>
RETURN

Alias operator

In Xbase*, only one variable identifier or the macro operator may be specified after the alias
operator for dynamic memory variables M-> or MEMVAR-> and field variables FIELD->.
An expression, with or without parentheses, cannot be used in these cases.

MEMVAR-> (&cField)
FIELD->(&cField)

Correct in Xbase*:

MEMVAR->& (cField)
FIELD->& (cField)

// 1is supported in Clipper,
// but not in Xbase++

Alaska Xbase* ' Basic Users Guide

21

Information for Clipper Programmers

Macro operator &

When the macro operator is used within code blocks, Xbase* always employs what is called
"late evaluation". This can lead to different results in special cases. For example:

LOCAL oTBrowse, oTBColumn, 1
PRIVATE cFieldName

USE Customer NEW
oTBrowse:= TBrowseNew ()

FOR i:=1 TO FCount ()

cFieldName := FieldName (i)
oTBColumn := TBColumnNew(cFieldName, {|| &cFieldName })
oTbrowse:addColumn(oTBColumn)

NEXT

The intention of this program code is to create a TBrowse object that displays columns for all
fields in a database. The field name is assigned to a PRIVATE variable that is
macro-expanded within the code block. In Clipper, "early evaluation" occurs and the code
block references the field whose name is contained in the PRIVATE variable cFieldName
when the code block is created. In Xbase**, the macro expression is only evaluated when the
code block is evaluated. Because of this, all columns in the TBrowse object display the
contents of the last field, since its name is contained in the variable cFieldName after the
FOR...NEXT loop terminates. The following would be the correct code to use in this
situation under Xbase**:

oTBColumn := TBColumnNew(cFieldName, &("{||"+cFieldName+"}"))

In this case, "early evaluation” is forced because the code block is first created as a character
string and then macro-expanded. The code block then contains a reference to the actual field
variable and not to the PRIVATE variable cFieldName.

The creation of file names with consecutive numbers as extension can be solved in Clipper in
the following way:

PRIVATE nNumber := "1"

RESTORE FROM SaveFile.&nNumber

This macro expression is not valid in Xbase**. It must be recoded, for example by first
assigning the file name to a variable and then using the variable as command parameter:

PRIVATE nNumber HERN
PRIVATE cFileName :- "SaveFile.&nNumber"

RESTORE FROM &cFileName

22

Alaska Xbase " * Basic Users Guide

Differences in the preprocessor and compiler

If a syntax error is reported when a Clipper program is compiled in Xbase*, the Xbase**
preprocessor output should be checked to see if it has generated the correct code. The output
of the preprocessor can be written to a PPO file using the compiler option /p.

USE &(dictionary->cFilename)

The line above can be used in Clipper to open a file (cFilename) whose name is stored in a
database (dictionary). The Xbase* preprocessor converts &(...) to a character string. The
correct code for Xbase** is:

USE (dictionary->cFilename)

Reference operator @

Clipper allows the following:

X := IIf(y, @param, z)

When this code is compiled and executed under Clipper, x contains a reference to param if y
equals .T. (true). This is not the case in Xbase**.

On the other hand, with Xbase**, any variable can be passed by reference to functions,
procedures or methods. This includes array elements, member variables and field variables.
The following function calls are allowed with Xbase* but not with Clipper:

MyFunc(@Customer->Name)
MyFunc(@oTBrowse:colorSpec)
MyFunc(@aArray[3,12,5])

#define _ XPP__

The Xbase* compiler defines the constant __XPP__. This allows the maintenance of
different source code within a single PRG file when it is to be compiled by Clipper and
Xbase*.

#ifdef __XPP__
<Xbase++ Code>
#else
<Clipper Code>
#endif

#pragma

The Xbase* compiler knows pragmas which do not exist in Clipper. A pragma is a directive
that toggles compile switches at compile time. This allows a particular compile switch for a
single line in a PRG file to be set or unset.

Alaska Xbase* * Basic Users Guide 23

Differences between Clipper ‘87 and Xbase-

4.2. Differences between Clipper '87
and Xbase*+

Optimization of logical expressions: When compiling Clipper '87 programs Xbase** uses
the same short-cut optimization for logical expressions like Clipper 5.x:

IF <ExprA> .AND. <ExprB>
// <ExprB> 1s not executed if <ExprA> == .F.
ENDIF

IF <ExprA> .OR. <EXprB>
// <ExprB> is not executed if <ExprA> == .T.
ENDIF

Use the compiler switch /z to disable short-cut optimization when compiling Clipper '87
programs with Xbase**. As an alternative the short-cut optimization can be
activatedldeactivated for a single line of code using #pragma Shortcut(OFF|ON).

Alias names: With Clipper '87, alias names consisting only of a single letter can be specified
in the USE command. With Xbase*, this is only permitted for letters above "M". For
example, the following lines cannot be used with Xbase** since they raise a runtime error:

USE Testl ALIAS A

USE Test2 ALIAS K
Instead, the correct program code for Xbase** would:
SELECT A

USE Testl

SELECT K
USE Test2

In general, it is recommended to use alias names with more than one letter.

24 Alaska Xbase' - Basic Users Guide

Differences between Clipper 5.x and Xbase* *

4.3.Differences between Clipper 5.x
and Xbase+*

The most important aspect when porting a Clipper program to Xbase** is given by the fact
that the first routine of an Xbase** application must be called MAIN. Without a MAIN
procedure, the linker cannot determine the entry point in the program and the executable file
cannot be loaded.

Program code located outside a FUNCTION or PROCEDURE declaration is automatically
associated with the MAIN procedure by the Xbase** compiler. Because of this, there can be
only one PRG file with program code located outside FUNCTION or PROCEDURE
declarations. Otherwise the MAIN procedure appears to be declared multiple times and an
executable file is not created.

The second point to keep in mind is that Xbase** programs always run in multiple threads.
The thread executing implemented program code has the highest priority. It receives CPU
access on preference by the operating system. This is why permanently polling DO WHILE
loops should be avoided. For example:

DO WHILE Inkey() <> 0

<program code>
ENDDO
Querying the keyboard in this way leads to permanent polling since there is no wait state in
the loop. This is allowed under DOS but contradicts the architecture of a pre-emptive
operating system. The above loop must be coded with Xbase as follows:

DO WHILE Inkey(0.1) <> 0
<program code>
ENDDO

Now, the loop has a wait state of 1/10th of a second. This is sufficient to guarantee that all
threads of a program will be executed. A Clipper program should be searched for DO
WHILE loops which do a permanent polling and provide no wait state. Some functions
accept a parameter to achieve a wait state. Another possibility for this is the Sleep() function.

Alaska Xbase* + Basic Users Guide 25

Difterences between Clipper 5.x and Xbase**

The following table gives an overview of the commands that can lead to incompatibilities
when a Clipper program is compiled using Xbase**.

Differences in commands

Clipper Xbase**

CALL Not available

COPY..TO..SDF Xbaset uses SDF as file extension
for a structure extended SDF file

DIR Not available

LABEL FORM Not available

REPORT FORM Not available

SET FORMAT Not available

SET FUNCTION Not available

SET TYPEAHEAD TO 0 Not allowed (min 10, max 100)

RESTORE FROM Existing MEM files cannot be read

RUN Starts a new command shell

FRM file The FRM file format is not supported

LBL file The LBL file format is not supported

MEM file The MEM file format is not supported

When using commands to import or export data the features of a corresponding Xbase™
DatabaseEngine (DBE) must be taken into consideration. DBEs are loaded implicitly when
commands are used. This applies to commands like COPY TO ... SDF or APPEND FROM ...
SDF. The import or export file, respectively, is maintained by a DatabaseEngine which is
loaded into memory if it is not found. In the case of the SDF format this is the SDF Datebase
Engine. It creates a structure-extended file with the extension 'SDF'. For this reason, the
following code is not allowed:

USE Customer
COPY TO Customer.sdf SDF

In this case, the Xbase** SDFDBE implicitly creates the structure-extended file
'‘Customer.sdf'. It has the same name as the target file. As a result, a runtime error is raised. At
this point, it is recommended to all Clipper programmers to read the specifications of the
Xbase** DatabaseEngines in the basic chapters of the Xbase* documentation. The Xbase+*
DBE:s differ in many aspects from Clipper's RDDs.

Xbase** differs from Clipper in that keyboard entries are registered in the event queue. The
command SET TYPEAHEAD TO 0 in Xbase** causes all events in the event queue to be
deleted. The number of events in the event queue cannot be set to 0, since this would lead to
a system halt. The minimum number of events that can be stored in the event queue is ten.

Alaska Xbase " * Basic Users Guide

Differences between Clipper 5.x and Xbase* *

The MEM file format is not supported by Xbase**. This means existing MEM files cannot be
read. In Xbase*, XPF files replace MEM files. Objects, arrays and code blocks can be stored
using this file format as well as character, date, numeric and logical data types. This opens a
completely new dimension for communicating between workstations on a network. Using the
XPF file format, code blocks can be exchanged between two workstations.

Differences in functions

Clipper Xbase**
AltD() Not available
AEval() Fifth parameter determines whether array elements
are passed by reference to the code block
CurDir() Returns or changes the current directory
Not available CurDrive()
Returns or changes the current drive
File() Includes second parameter "D", "H", "S"
FkLabel() Not available
FkMax() Not available
NoSnow() Not available
ReadKey() Not available
SetBlink() Only available in full screen mode (VIO mode)
SetColor() Intensity attribute is supported for background color
Word() Not available

In Xbase*, the function AEval() accepts a fifth parameter that is a logical value. This
specifies whether array elements are passed by reference or by value to the code block. The
following line creates an array and fills the 10 elements with their corresponding indexes:

aArray := AEval(Array(10), {Ix,il| x:=1 },.,, .T.)

The functions CurDir() and File() have expanded functionality in Xbase** (compared to
Clipper). The additional function CurDrive() is also included in Xbase**. The current
directory and drive can be changed using CurDir() and CurDrive() without using the
command RUN. Since RUN operates differently under Xbase** by starting another command
shell, the Clipper technique will not change the directory in the application under Xbase**.
The function File() accepts a file type as a second parameter. An example of the enhanced
file function is shown in the following code that checks for the existence of a directory:

cDir := Space(64)
@ 10, 10 GET cDir
READ

Alaska Xbase* * Basic Users Guide 27

Differences between Clipper 5.x and Xbase- -

IF ! File(Trim(cDir), "D")
Alert("Invalid directory")
ELSE
CurDir(cDhir)
ENDIF

The GetDoSetKey() function programmed in GETSYS.PRG calls GetPostValidate() prior to
evaluating a SetKey() code block. By this, Xbase** guarantees that no invalid data is written
to database fields.

Reserved keywords

Xbase** has more reserved keywords than Clipper. Using an Xbase** reserved keyword as an
identifier for variables, functions etc., causes the Xbase** compiler to assert an error. A list of
all reserved keywords is found in the online help in the section "Xbase** basics", "Language
elements of Xbase*", "Keywords".

Differences in instance variables and methods

Clipper

Xbaset*

oGet:assign
oGet:end
oGet:badDate
oGet:minus
oGet:picture
oGet:subScript
Not available

oTbrowse:end()

oTBrowse:rowPos:=<n>

oTBrowse:nTop:=<n>
oTBrowse:nLeft:=<n>
oTBrowse:nBottom:=<n>
oTBrowse:nRight:=<n>

Not available
Not available

oGet:_assign()

oGet:_end()

oGet:badDate()

oGet:minus()

When not indicated, default picture
Always NIL

oGet:posInBuffer()

oTBrowse:_end()

Parameters for navigation code blocks:

EVAL(oTBrowse:skipBlock, nSkip, oTBrowse)
EVAL(oTBrowse:goTopBlock, oTBrowse)
EVAL(oTBrowse:goBottomBlock, oTBrowse)

Does not synchronize with the data source
but only moves the TBrowse cursor

:configure() must be subsequently executed
:configure() must be subsequently executed
:configure() must be subsequently executed
:configure() must be subsequently executed

oTBrowse:firstScrCol()
oTBrowse:viewArea()

Alaska Xbase * * Basic Users Guide

Differences between Clipper 5.x and Xbase'

A leading underscore is added to the names of the :assign() and :end() methods of the Get
and TBrowse classes in Xbase*. This is done because the previous identifiers are reserved
keywords. No changes need to be made in Clipper programs, since the Xbase** preprocessor
makes this change.

Clipper requires the instance variable oGet:subScript to obtain correct references to array
elements used as variables in the @...GET command. Xbase** uses the reference operator @
instead, since single array elements can be passed by reference. For this reason,
oGet:subScript is obsolete and always contains NIL.

There is an essential difference between the TBrowse class in Xbase** and Clipper.
Assignments to the instance variable :rowPos do not automatically synchronize the record
pointer in the data source. If the TBrowse cursor is repositioned by changing :rowPos, the
record pointer of the data source must be explicitly moved. Also, the TBrowse object is
passed as a parameter to the code blocks :skipBlock, :goTopBlock and :goBottomBlock.

In addition, methods have been added to the Get class and the TBrowse class which are
required for supporting mouse control.

Differences in database commands and functions

Clipper Xbase**

DbSetDriver() DbeSetDefault()
RddList() DbeList()

RddSetDefault() DbeSetDefault()

SET EXCLUSIVE

Default value is ON Default value is OFF

SET EXACT

Is not considered with Is considered with

SEEK / DbSeek() SEEK / DbSeek()
CREATE INDEX

Sorting order of Sorting order of characters
characters depends depends on SET COLLATION
on NTX??7?.0BJ modules and SET LEXICAL

that must be linked

Alaska Xbase* * Basic Users Guide 29

Differences between Clipper 5.x and Xbase* -

Clipper Xbase**

Structure extended file

FIELD_LEN =3 FIELD_LEN =5

Field_len > 999 Field_dec is not considered
is coded using the field for the length of a character
Field_dec field

COMMIT at end of program

Is implicitly executed Is not implicitly executed
RDD versus DBE

The database function DbSetDriver() and all the Rdd...() functions of Clipper are not
available in Xbase**. This is because Xbase* does not support the proprietary concept of a
monolithic RDD (Replaceable Database Driver). Instead of the RDD approach, the concept
of database engines is used in Xbase** and offers much more flexibility in data and file
management. Because of this difference, Xbase* offers the Dbe...() functions instead of the
Rdd...() functions in Clipper.

SET EXCLUSIVE

SET EXCLUSIVE is set OFF by default in Xbase**. This means that by default, databases are
opened in SHARED mode for multi-user (network) operation in Xbase**. If a Clipper
application not designed for multi-user access is recompiled under Xbase*, the command SET
EXCLUSIVE ON needs to be inserted in the startup routine before any databases are opened.

SET EXACT

When SEEK and DbSeek() are used to search for character values in a database, Xbase* uses
the toggle SET EXACT to determine whether blank spaces at the end of character strings
should be ignored in comparing character values.

CREATE INDEX

Xbase** supports collation tables. A collation table assigns weighing factors to single
characters. This allows the sorting order of characters to be user-defined. A collation table is
used for string comparison as well as for index creation. The collation table is extremely
important when creating index files to be accessed from both Xbase™ and Clipper. In this
case, Xbase* must use the same collation table as Clipper. In Clipper, the sorting order of
characters is defined at link time by a nation module, and cannot be changed at runtime.

Clipper includes various NTX???.0BJ files that must be linked to the EXE in order to define
the country-specific sorting of characters. To achieve the same sorting order with Xbase**, the
corresponding collation table must be activated using the SET COLLATION TO command.
The following table lists all language specific differences between Clipper and Xbase**.

30

Alaska Xbase - * Basic Users Guide

Differences between Clipper 5.x and Xbase*

Language-specific sorting of characters

Language Clipper module Xbase** command

American not available SET COLLATION TO AMERICAN
British not available SET COLLATION TO BRITISH
Danish NTXDAN.OBJ SET COLLATION TO DANISH

Dutch NTXDUT.OBIJ SET COLLATION TO DUTCH

Finnish NTXFIN.OBJ SET COLLATION TO FINNISH
French NTXFRE.OBJ SET COLLATION TO FRENCH
German NTXGER.OBJ SET COLLATION TO GERMAN
Greek 437 NTXGR437.0BJ SET COLLATION TO GREEK437
Greek 851 NTXGR851.0BJ SET COLLATION TO GREEKS851
Icelandic 850 NTXIC850.0BJ SET COLLATION TO ICELANDIC850
Icelandic 861 NTXIC861.0BJ SET COLLATION TO ICELANDIC861
Italian NTXITA.OBJ SET COLLATION TO ITALIAN
Norwegian NTXNOR.OBJ SET COLLATION TO NORWEGIAN
Portuguese NTXPOR.OBJ SET COLLATION TO PORTUGUESE
Spanish NTXSPA.OBJ SET COLLATION TO SPANISH
Swedish NTXSWE.OBJ SET COLLATION TO SWEDISH
System not available SET COLLATION TO SYSTEM
ASCII SET COLLATION TO ASCII

The default for SET COLLATION TO is defined in DBESYS.PRG. It depends on the
country specific version of Xbase**. If index files are to be accessed from Xbase** as well as
from Clipper, you must include the following lines in your code:

#ifdef _ XPP__

SET COLLATION TO <your country>

#endif

Accessing index files from Xbase** and Clipper at the same time requires both using the same
sorting order for characters. When a Clipper program uses a different sorting order than an
Xbase** program, index files will get corrupted sooner or later.

CREATE FROM

The format of a structure-extended DBF file is different in Xbase**. The length of the field
FIELD_LEN is 5, not 3 as in Clipper. This allows the maximum possible field length to be
entered directly. It is no longer necessary to use the decimal place field to enter field lengths

longer than 999 characters.

Alaska Xbase* * Basic Users Guide

31

Differences between Clipper 5.x and Xbase *

Memo Files

The maximum number of characters that can be stored in a memo field is not limited to 64
KB under Xbase**. If memo fields are accessed in a multi-user environment from Clipper and
Xbase*, the 64 KB limitation must be implemented in Xbase*.

COMMIT at program's end

When a Clipper program ends, it commits all pending record updates to databases still open
(the COMMIT command is implicitly executed). This is not the case with Xbase**. Instead,
Clipper's behaviour is programmed in the file APPEXIT.PRG which contains the implicit
EXIT PROCEDURE AppExit(). This procedure is called when a program terminates and can
be changed to meet a programmer's needs.

RETURN and QUIT

An optional numeric parameter can be specified for QUIT. It is passed to the ErrorLevel()
function before an application terminates. The same can be achieved if the function Main()
returns a numeric value with the RETURN statement.

Other differences
Clipper Xbaset*
No Main procedure PROCEDURE Main must be the first

procedure of the application
Implicit INIT procedures in:

APPSYS.PRG

ERRORSYS.PRG ERRORSYS.PRG

RDDSYS.PRG DBESYS.PRG

Implicit EXIT procedures in:

Not available APPEXIT.PRG

PICTURE function @E Numbers are displayed in the country
specific format of the operating system

Transform(1.23,"@N") Decimal point and thousands
separator are configurable

Time() Separators between HH:MM:SS are
configurable

not available SetLocale() configures country

specific settings

32

Alaska Xbase " - Basic Users Guide

New functions in Xbase' * (unknown in Clipper)

Clipper

Xbaset*

Constants for Set() function

_SET_DEBUG

_SET_SCROLLBREAK

New constants for Set()
not available

These constants are
not supported

_SET_CHARSET
_SET_COLLATION
_SET_LEXICAL
_SET_TIME

The configuration settings of the operating system are used to determine the default separators
used in formatting numeric and date values as well as the return value of the function Time().
Thus, the PICTURE formatting with @E is obsolete and is ignored by Xbase*. However,
numerous country specific settings can be configured with the function SetLocale().

4.4. New functions in Xbase++

(unknown in Clipper)

This section lists all functions, commands and statements which are new in Xbase** compared

to Clipper.

New functions in Xbase**

Name Description

AppDesktop() Returns the desktop window

AppEvent() Reads events from the event queue
AppType() Determines the application type

Bin2u() Converts a binary string to a LONG integer
Bin2Var() Converts a binary string to any data type
ClassCreate() Creates a class dynamically at runtime
ClassDestroy() Releases a dynamic class object
ClassObject() Returns the class object of any class
ConfirmBox() Displays GUI dialog box for user confimation
ConvToAnsiCP() Converts a string to ANSI

ConvToOemCP() Converts a string to OEM

CurDrive() Returns current drive letter

DispOutAt() Screen output without cursor position change
DIICall() Calls a function contained in a DLL
DIlExecuteCall() Calls a DLL function using a call template

Alaska Xbase * * Basic Users Guide

33

New functions in Xbase* * (unknown in Clipper)

Name Description

DllLoad() Loads a DLL dynamically at runtime
DllPrepareCall() Prepares a call template for a DLL function
DIlUnLoad() Unloads a DLL

EnableClipRect() Enables clipping for virtual text mode screen
GetEnableEvents() Enables the mouse for GETs
GetEventReader() GETs use AppEvent() instead of Inkey()
GetHandleEvent() Default event handler for GETs
GetKillActive() Takes focus from active GET

GetList() Returns current GetList array

GetListPos() Returns position of current GET in GetList
GetToMousePos() Moves the cursor to the mouse within GETs
IsFieldVar() Checks if field exists

IsFunction() Checks if function exists

IsMemberVar() Checks if object has a specific member variable
IsMemvar() Checks if memory variable exists
IsMethod() Checks if object has a specific method
LastAppEvent() Returns last event

MsgBox() Displays GUI message box

NextAppEvent() Returns next event

NumButtons() Number of mouse buttons

PostAppEvent() Posts an event to the event queue

PValue() Retrieves value of n-th parameter
RunRexx() Runs a REXX command file

RunShell() Opens a new command shell

SetAppEvent() Associates an event with a code block
SetAppFocus() Sets focus to a window or GUI control
SetAppWindow() Returns the application window
SetClipRect() Defines the clipping area for text mode
SetLexRule() Defines lexical comparison rules for characters
SetLocale() Function for localization

SetMouse() Enables mouse events in text mode
SetTimerEvent() Starts a timer thread

Sleep() Halts the current thread for specified time
TBApplyKey() Default Inkey() handler for TBrowse
TBHandleEvent() Default AppEvent() handler for TBrowse
TBtoMousePos() Moves the TBrowse cursor to the mouse pointer
ThreadID() Returns ID of current thread

ThreadObject() Returns current Thread object

ThreadWait() Waits for one thread to terminate
ThreadWaitAll() Waits for multiple threads to terminate
U2bin() Converts an unsigned LONG integer to binary
Var2Bin() Converts any data type to binary

34

Alaska Xbase " Basic Users Guide

New functions in Xbase** (unknown in Clipper)

New Database related functions

Name Description

DbCargo() Attaches an arbitrary value to a used work area
DbClientList() Returns all registered clients of a work area
DbContinue() Functional equivalent of CONTINUE
DbCopyExtStruct() Functional equivalent of COPY STRUCTURE EXTENDED
DbCopyStruct() Functional equivalent of COPY STRUCTURE
DbCreateExtStruct() Functional equivalent of CREATE STRUCTURE EXTENDED
DbCreateFrom() Functional equivalent of CREATE FROM
DbDeregisterClient() Removes a registered client from a work area
DbeBuild() Builds a compound DatabaseEngine

Dbelnfo() Returns information about a DatabaseEngine
DbeList() Returns the names of loaded DatabaseEngines
DbeLoad() Loads a DatabaseEngine

DbeSetDefault() Selects the default DatabaseEngine
DbeUnload() Releases a DatabaseEngine from memory
DbExport() Functional equivalent of COPY TO
DbGoPosition() Moves the record pointer using a percent value
DbImport() Functional equivalent of APPEND FROM
Dblnfo() Returns information about a work area

DbJob() Associates a work area with a code block
DblJoin() Functional equivalent of JOIN

DbList() Functional equivalent of LIST

DbLocate() Functional equivalent of LOCATE

DbPack() Functional equivalent of PACK

DbPosition() Returns the record pointer position as percent value
DbRegisterClient() Registers a client in a work area

DbRelease() Releases a work area from current work space
DbRequest() Transfers a work area into current work space
DbResetNotifications() Enables notifications from work areas to clients
DbSkipper() Default DBF skipper function for TBrowse
DbSort() Functional equivalent of SORT
DbSuspendNotifications() Disables notifications from work areas to clients
DbTotal() Functional equivalent of TOTAL

DbUpdate() Functional equivalent of UPDATE

DbZap() Functional equivalent of ZAP

FieldInfo() Returns field information

OrdIsDescend() Checks if index is descending

OrdIsUnique() Checks if index is unique

WorkSpaceEval() Evaluates a code block in all used work areas
WorkSpaceList() Returns alias names of all used work areas

Alaska Xbase ' * Basic Users Guide

35

New functions in Xbase- - (unknown in Clipper)

New Directives, Statements and Commands

Name Description

#pragma Toggles compiler switches at compile time
ACCESS | ASSIGN Declares access/assign methods
APPBROWSE Application part (GUI browser)
APPDISPLAY Displays application parts

APPEDIT Application part (Edit window)
APPFIELD Declares a field for an application part
CLASS Declares a class

CLASS METHOD Declares a class method

CLASS VAR Declares a class variable

DEFERRED Declares method as deferred
DLLFUNCTION Creates a function which calls a DLL function
FINAL Declares method as final

INLINE Declares inline method

METHOD Declares method

SET CHARSET Selects ANSI or OEM character set

SET COLLATION Sets country specific collation table

SET LEXICAL Enables lexical comparison rules for strings
SET TIME Sets display format for the system time
SYNC Declares method as synchronized

VAR Declares an instance variable

Xbase** Class functions

Name Description

DataRef() Class for referencing data
Error() Error class

Get() Get class

TBrowse() TBrowse class

TbColumn() TBColumn class

Thread() Thread class

Signal() Signal class

VCrt() Virtual screen class for text mode
Xbp3State() Three state button class
XbpBitmap() Bitmap class

XbpBrowse() GUI browser class
XbpCheckBox() Checkbox class
XbpClipBoard() Clipboard class

XbpColumn() Column class for GUI Browser
XbpComboBox() Combobox class

36

Alaska Xbase

-+ Basic Users Guide

New functions in Xbase ' * (unknown in Clipper)

Name Description

XbpCrt() Hybrid window class
XbpDialog() GUI window class
XbpFileDev() File device class
XbpFileDialog() File selection dialog
XbpFont() Font class

XbpFontDialog() Font selection dialog
XbpHelp() Class for online help window
XbpHelpLabel() Class for context sensitive help
XbpIWindow() Implicit window
XbpListBox() Listbox class

XbpMenu() Menu class

XbpMenuBar() Menubar class
XbpMetaFile() Metafile class

XbpMLE() Multi line edit class
XbpPartHandler() Parent class for XbaseParts
XbpPresSpace() Presentation space
XbpPrinter() Printer class
XbpPushButton() Pushbutton class
XbpRadioButton() Radiobutton class
XbpScrollBar() Scrollbar class

XbpSetting() Abstract class for switches
XbpSLE() Single line edit class
XbpSpinButton() Spinbutton class

XbpStatic() Static GUI control class
XbpSysWindow() Abstract class for system dialogs
XbpTabPage() Tabpage class
XbpTreeView() Tree view class
XbpTreeViewltem() Items in tree view
XbpWindow() Abstract window class

Functions of the GraphicsEngine

Name Description

GraArc() Draws an arc, circle or ellipsis
GraBitBlt() Copies a bitmap

GraBox() Draws a rectangle

GraError() Returns last error code
GraLine() Draws a line

GraMarker() Draws a marker
GraPathBegin() Opens a graphic path

Alaska Xbase* * Basic Users Guide

37

Ditferences between Class(y) and Xbase* -

Name Description

GraPathClip() Uses graphic path for clipping
GraPathEnd() Closes a graphic path

GraPathFill() Fills a graphic path

GraPathOutline() Outlines a graphic path

GraPos() Sets the pen position
GraQueryTextBox() Calculates coordinates for strings
GraRotate() Rotates graphic output

GraScale() Scales graphic output

GraSegClose() Closes a graphic segment
GraSegDestroy() Releases a graphic segment
GraSegDraw() Draws a graphic segment
GraSegDrawMode() Sets the draw mode for graphic segments
GraSegFind() Finds graphic segments
GraSegOpen() Opens a graphic segment
GraSegPickResolution() Sets sensitivity for finding graphic segments
GraSegPriority() Sets the priority for graphic segments
GraSetAttrArea() Sets attributes for drawing areas
GraSetAttrLine() Sets attributes for drawing lines
GraSetAttrMarker() Sets attributes for drawing markers
GraSetAttrString() Sets attributes for drawing strings
GraSetColor() Sets the color for all graphic functions
GraSetFont() Sets the font for drawing strings
GraSpline() Draws a curve

GraStringAt() Draws a string

GraTranslate() Shifts graphic output

4.5. Differences between Class(y) and Xbase**

Class(y) is the leading third-party product for object-oriented programming under Clipper.
The Xbase** syntax for the object model is similar to Class(y), but does not copy the syntax
because the object model and the implementations are different. The most important
difference is that the Xbase** compiler takes care of class declarations instead of the Clipper
preprocessor, as used by Class(y). Because of how the preprocessor is used by Class(y), only
one class can be declared in each PRG file. Xbase** allows any number of classes to be
declared in a single file. Class(y) translates each METHOD to a STATIC FUNCTION and
the CREATE CLASS declaration to a FUNCTION. Xbase** handles things differently. The
compiler creates a class function from the CLASS declaration and creates references to
method implementations, not STATIC FUNCTIONS. In Xbase**, a method differs from a
static function because the variable self implicitly references the object executing the method.
The variable self cannot be declared or changed within methods. Assigning a value

38

Alaska Xbase " * Basic Users Guide

Differences between Class(y) and Xbase' *

to self or passing self to a function using the reference operator generates an Xbase*
compiler error.

An important instance variable in Class(y) is ::super. This instance variable does not exist in
Xbase** since it is not appropriate for clearly identifying superclass objects in multiple
inheritance scenarios. Xbase** accesses the member variables and methods of each superclass
using the name of the superclass. Example:

CLASS DataDialog FROM XbpDialog
EXPORTED:
METHOD init
<..0>

ENDCLASS

METHOD DataDialog:init (parameters)
::xbpDialog:init (parameters)
<.olo>

RETURN self

The :init() method of the superclass must be called by this explicit "cast” in Xbase*. Any
visible method in any superclass can be explicitly called by specifying the class name in the
call to the method.

Another important difference between Class(y) and Xbase** is the fact that class methods and
class variables are only accessible through the class object under Class(y). Under Xbase**,
each instance of a class has access to class methods and class variables. Calling a class
method can occur via any object (instance) of a class in Xbase**. Class variables are also
accessible through instances. Xbase* does not require a MESSAGE...TO CLASS to be
declared in the class to delegate class variable and method calls to the class object.

Since the Xbase** syntax for declaring classes and methods is so similar to the Class(y)
syntax, porting Class(y) code to Xbase** is relatively easy with help from the preprocessor.
As an example, the preprocessor directives included below translate Class(y) code to
Xbase*:

/* Class(y) Xbase++ */
#ifdef _ XPP___

#command CREATE CLASS <x> [FROM <y>] => CLASS <x> [FROM <y>]

#command MESSAGE <x> METHOD <y> => METHOD <x> IS <y>

#command CLASS MESSAGE <x> METHOD <y> => CLASS METHOD <x> IS <y>
// Name of the superclass

#xtrans :super => :<superClassName>
#else

#include "Class(y).ch"
#endif

Alaska Xbase* * Basic Users Guide 39

Using the mouse

If Class(y) code is to be ported to Xbase*, the preprocessor can be used to accommodate
differences in syntax. The #ifdef directive allows the same code to be compiled using either
Clipper/Class(y) or Xbase**. The PRG file containing the Class(y) class declaration just
needs to be compiled using preprocessor directives that translate the existing code into valid
Xbase* code.

4.6. Using the mouse

The first step in porting existing Clipper programs to a 32bit operating system is integrating
the mouse for program navigation. In Xbase*, all dialog functions and commands can be
controlled using the mouse. This includes @...SAY...GET, MENU TO, Alert(), TBrowse(),
and Memoedit(). To provide mouse support, the function SetMouse(.T.) needs to be inserted
into the start routine of the program. If this is included, the function AppEvent() is used to
retrieve events instead of the function Inkey(), which reads only keyboard input. Both
functions return a numeric value corresponding to either the key code of a pressed key
(Inkey()) or the identity of the last event that occurred (AppEvent()). With Clipper, Inkey() is
the function generally used to retrieve keyboard input. This function only exists in Xbase**
for compatibility. Xbase** replaces Inkey() with the function AppEvent() in order to read
events from the event queue.

The return values of AppEvent() and Inkey() may be different when the same key is pressed
because the DOS Inkey() code is not compatible with the AppEvent() code. For this reason,
the transition to mouse support using SetMouse(.T.) also requires that calls to SetKey() be
replaced by calls to the function SetAppEvent(). Code blocks that are associated to keys
using SetKey() must be associated to the same key using SetAppEvent(). The #define
constant used to identify keys is also different. For example:

SetKey (K_F10, {|| DoSomething() 1}) // Clipper

SetAppEvent (xbeK_F10, {|| DoSomething() }) // Xbase++

The first line contains Clipper code. This call associates the function key F10 to a code block.
This code also works correctly in Xbase** as long as the mouse is not activated. After
SetMouse(.T.) is called to activate the mouse, the code block {ll DoSomething() } will not be
executed when the F10 key is pressed. To guarantee execution of the appropriate code block
after the F10 key is pressed, the code block must be associated to the xbeK_F10 event code
rather than the K_F10 key code using SetAppEvent().

40

Alaska Xbase* * Basic Users Guide

The Xbase** FormDesigner - XPPFD.EXE

5. The Xbase** FormDesigner -
XPPFD.EXE

The Xbase+ FormDesigner is a powerful tool designed to support the programmer in the
development of GUI applications (Graphical User Interface). The FormDesigner is written
entirely in Xbase* which demonstrates the versatility of this development package. This
chapter describes how to utilize and work with the FormDesigner and how generated code
can be integrated into an application program.

5.1. Components of the FormDesigner

The FormDesigner is started by double-clicking the corresponding icon in the Xbase** folder
or by entering XPPFD on the command line. The main window of the FormDesigner is
initially displayed together with a blank form. The new form is an XbpDialog window into
which GUI controls, or Xbase Parts, are inserted. The Xbase Parts are selected by clicking
corresponding icons in the main window of the FormDesigner.

#: Xbase++ FormDesigner

Main window of the FormDesigner

The main window is divided into three sections: menu bar, tool palette and status line. All
functions of the FormDesigner can be selected via the menu bar. The major functions are
integrated into the tool palette and are accessible by clicking corresponding icons with the
mouse. For comfortable usage, the icons are contained in three tabbed pages.

The main window is complemented by supplementary windows which are opened via the
menu system and not permanently visible.

Alaska Xbase* * Basic Users Guide 41

Components of the FormDesigner

The following table gives an overview:

Additional windows of the FormDesigner

Menu item Window
Edit
- Sequence Changes the sequence of Xbase Parts
in a form
- Symbols for iVar Defines symbols for instance variables
used in object-oriented code
Assistents
- Fields Selects database files and fields
Options
- Settings Defines default settings for a form and
the FormDesigner
- Alignment pallette Contains icons for default alignment of
Xbase Parts within the marking rectangle
- Property monitor Changes properties of Xbase Parts contained
in a form
- Resolution monitor Displays the form in comparison with
different screen resolutions
Help
- Help index (F1) Displays the online help of the FormDesigner

Note: the FormDesigner has a context-sensitive online help that is activated by pressing the
F1 key. To get detailed information about a particular window, the window must have focus
before F1 is pressed.

42 Alaska Xbase* * Basic Users Guide

Working with the FormDesigner

5.2. Working with the FormDesigner

Working with the FormDesigner always involves following distinct steps: selection of
controls or database fields, arrangement in the form, saving the form, and creation of program
code. The easiest way for selection of controls or Xbase Parts, respectively, is clicking a
corresponding icon in the tool palette of the FormDesigner. Then an insertion frame is
displayed in the form which is to be positioned with the mouse. A left click marks the insert
position and creates an Xbase Part in the form at this point. If database fields are to be
inserted, the field selection window must be opened via the menu items "Assistents->Fields".
Multiple field names can be selected in this window. Depending on the data type of a field,
different Xbase Parts accessing a database field are created in the form. They must be
positioned with the insertion frame.

The FormDesigner has two modes to position the insertion frame: pixel-oriented and
grid-oriented. The positioning mode is selected in the settings dialog ("Use grid") which is
opened via the menu items "Options->Settings”. This dialog defines settings to configure the
FormDesigner. One setting, for instance, is the grid size used for positioning. If the grid is
activated, Xbase Parts can be moved in the form only in steps defined by the grid. To
position an Xbase Part exactly at the mouse pointer tip, the grid must be deactivated.

While a form is designed, it is normally necessary to reposition inserted Xbase Parts, to
group them using static elements such as lines or frames, or to make other changes. The form
can be modified comfortably by means of a marking frame that allows the entire appearance
of a form to be changed with just a few mouse clicks. The marking frame selects one or more
Xbase Parts for modification. Position and size of the marking frame define position and size
of the marked elements. If the frame is resized, different options are available to define how
the marked Xbase Parts are to be scaled. These options are selected in the
"Options->Settings" window. For instance, the spacing between Xbase Parts can be scaled, or
their size, or both. Whether or not controls embedded in Xbase Parts (children) should be
scaled as well, is also configurable. A variety of standardized alignment options can be
selected in the "Alignment” window. All marked Xbase Parts can be centered in the marking
frame or given the same width by just clicking the corresponding icon.

Parent-child relationships between Xbase Parts can be defined or modified easily. Various
options exist for this purpose in the context menu of the form which is opened by a right
mouse click.

Options in the context menu

Option Description

Group XBPs Creates a Group box as the parent for all
marked Xbase Parts

Ungroup XBPs Removes the Group box and defines the form

as the parent for Xbase Parts contained in

Alaska Xbase* * Basic Users Guide 43

FUNCTION Code

Option Description
the Group box
Assign parent Defines an Xbase Parts as the parent for
all marked elements
Release parent Releases a parent-child relationship without
deleting the parent
To back Moves all marked Xbase Parts to the background
To front Moves all marked Xbase Parts to the foreground
Repaint all Redraws the entire form

Xbase Parts are grouped using a Group box by default (an XbpStatic element of the type
XBPSTATIC_TYPE_GROUPBOX). It is used as parent for marked Xbase Parts. After a
group is defined in this way only the parent can be marked, not the embedded Xbase Parts.
To select or modify children of an Xbase Part, it is necessary to release the parent-child
relationship.

Clicking the menu items "Options->Property monitor" opens a window which is used to
change proprties of Xbase Parts contained in the form. It uses a tree view for visualization of
the parent-child hierarchy and is equipped with a browser which displays the properties of the
current Xbase Part. If properties are changed in the browser the corresponding Xbase Part is
updated with new data.

When a form is completely designed, it can optionally be stored or code can be generated in
both functional or object-oriented style. This code can be modified further using a standard
text editor. In general it is recommended to store a form in case it needs to be modified later
on, or to serve as template for other forms. The FormDesigner stores a form in binary files
which can be loaded at a later point in time. Which type of source code is generated by the
FormDesigner is selected in the menu system ("Form->FUNCTION Code" or
"Form->CLASS Code"). As an alternative, the default type is created by clicking an icon in
the tool palette. The default source code type is selected in the Settings window.

5.3.FUNCTION Code

Before source code is generated by the FormDesigner, it is necessary to sort the Xbase Parts
in the form. They must appear in the order that corresponds to the sequence a user accesses
them by using the tab key. Normally the source code for Xbase Parts is created in the same
sequence in which they are inserted into the form. This sequence may not be equivalent to
user interaction. The sequence can be checked and/or modified in the Sequence window
(menu items: Edit->Sequence). Source code should be created only if the sequence of Xbase
Parts corresponds with user interaction.

14

Alaska Xbase ' + Basic Users Guide

FUNCTION Code

A sample form can be found in the .\SAMPLES\BASICS\XPPFD directory which was
created by the FormDesigner. It is used as an example for further explanations and is shown
below:

| New Flm

Example for a customer form

The form contains two grouped XbpSLEs to edit database fields. Pushbuttons are arranged
below the Group box for database navigation and to close the form. Both types of source
code for this form, functional and object-oricnted, cxist in the .\SAMPLES\BASICS\XPPFD
directory. It can be compiled and executed. For the source code to function correctly, the
FormDesigner makes some simplifying assumptions that must be considered when the code is
integrated into an application program.

The functional source code starts with all necessary #include directives and declares the Main
procedure plus some LOCAL variables. Then all databases that are accessed by a form are
opened with the USE command. The sample form uses only one database:

#include "Gra.ch"
#include "Xbp.ch"
#include "Appevent.ch"

PROCEDURE Main
LOCAL nEvent, mpl, mp2
LOCAL oDlg, oXbp, drawingArea, oXbpl, aEditControls := {}

// Path is abbreviated only in the documentation
USE ..\SAMPLES\BASICS\XPPFD\CUSTOMER.DBF NEW EXCLUSIVE

The LOCAL variable aEditControls is initialized with an empty array. It is used to collect all
Xbase Parts that access database fields. It provides a comfortable way to access all Xbase
Parts in a user-defined function that edit data in the form.

Alaska Xbase* * Basic Users Guide 45

FUNCTION Code

Since the FormDesigner cannot make any assumptions about possible record locking
strategies in a multi-user scenario, the databases are opened for exclusive access. Therefore,
the program lines that open databases with the USE command are most likely subject to
change when the source code is integrated into an application program.

After the databases are opened, the form is created as an instance of the XbpDialog class and
a reference to the drawing area is assigned to a LOCAL variable.

o

oDlg := XbpDialog():new(SetAppWindow () :setParent ()
(148,98}, {334,182}, , .F.

oDlg:border := XBPDLG_SIZEBORDER

oDlg:title := "New Form"

oDlg:create()

)

drawingArea :- oDlg:drawingArea
drawingArea:setColorBG(GRA_CLR_PALEGRAY)
drawingArea:setFontCompoundName("8.Helv.normal")

These lines of code define parent, position and size of the form plus border type and title.
Also, background color and font are set. This code most probably needs to be modified
except for position and size. Especially the parent window should be checked if it is correct.
The FormDesigner assumes the desktop window will be used as parent and writes the
expression SetAppWindow():setParent() to retrieve it. This again relies on the assumption
that an application window is defined in APPSYS.PRG which is different from the desktop
window.

Note: If this code is to be executed inside the AppSys() procedure, only SetAppWindow()
may be specified as parent. When a program starts, the desktop window is the application
window. Since the desktop window has no parent, the expression
SetAppWindow():setParent() leads to a runtime error inside AppSys().

The LOCAL variable drawingArea references the drawing area of the form. It is used as
parent for subsequent Xbase Parts:

oXbpl := XbpStatic():new(drawingArea, , {12,48}, {300,96})
oXbpl:caption := "Customer"

oXbpl:type := XBPSTATIC_TYPE_GROUPBOX

oXbpl:create()

These four lines of code create the group box used to group the entry fields in the form. Since
it serves as parent for the XbpSLEs, the XbpStatic object is assigned to a separate LOCAL
variable oXbp 1. This variable is used in the source code to define the parent for XbpSLE
objects:

oXbp :- XbpStatic():new(oXbpl, , (12,48}, (72,24})
oXbp:caption :- "Lastname:"

oXbp:options :- XBPSTATIC_TEXT_VCENTER+XBPSTATIC_TEXT_RIGHT
oXbp:create ()

46

Alaska Xbase* * Basic Users Guide

FUNCTION Code

oXbp := XbpSLE():new(oXbpl, , {96,48}, {192,24})
oXbp:bufferLength := 20
oXbp:tabStop := .T.
oXbp:dataLink := {|x| IIf(PCount()==0, ;
Trim(CUSTOMER->LASTNAME), ;
CUSTOMER->LASTNAME := x) }

oXbp:create() :setDatal()
AAdd(aEditControls, oXbp)

When Xbase Parts access database fields but have no caption, an XbpStatic object is always
created to display text left to the entry field. The text defaults to the field name and is
displayed right-aligned in mixed case.

For the program logic, the :dataLink code block is essential since it performs read and write
access to a single field. In functional style source code, literals appear in the code block for
alias and field name. Therefore, the code must be adapted, for example, when a different alias
name is specified in the USE command.

The :bufferLength instance variable limits the number of characters that can be entered into
the edit buffer of an XbpSLE object. It equals to the length of the corresponding database
field, so an XbpSLE cannot edit more characters than can be stored in a field. Since blank
spaces are valid characters for an XbpSLE, the :dataLink code block must remove trailing
spaces when it reads a database field. Otherwise the edit buffer is already full after read
access and no changes will be possible when the XbpSLE is in insert mode. Characters can
only be overwritten in this case.

Note: in functional code, the LOCAL variable oXbp always receives the reference to an
Xbase Part which is not used as parent. In the example above, it first references an XbpStatic
object. After the :create() method is executed, a new object reference is assigned to this
variable (0Xbp := XbpSLE():new(...)). This does not overwrite or destroy the XbpStatic
object. When the :create() method is finished, the XbpStatic object is already added to the
child list of the parent, which is the Group box referenced in 0Xbp 1. A reference to the
XbpStatic object could be retrieved with the expression oXbp:childList()[1]. After the
XbpSLE object is created, it is added to the aEditControls array. All Xbase Parts that access
database fields via the :dataLink code block are added to this array and can be accessed in a
program using this variable.

The source code generated for the creation of Xbase Parts can be quite extensive and may
look complex at the beginning. However, it consists only of a simple pattern that is repeated:

oXbp := Xbp...():new(<parent>, , <position>, <size>)
oXbp:<configuration> := <value>
oXbp:create ()

This pattern corresponds to the "life cycle” of Xbase Parts. An instance of a class is created
with the :new() method. The instance (object) gets assigned configuration values. According
to the configuration, system resources are requested from the operating system with the

Alaska Xbase* * Basic Users Guide 47

FUNCTION Code

:create() method. After :create(), the Xbase Part functions and is referenced in the child list
of its parent. Therefore, the LOCAL variable 0oXbp can be reused.

The FormDesigner generates standardized source code and releases a programmer from a lot
of 'typing work'. Source code for the layout and the creation of a form, or for accessing
database fields (:dataLink), can be standardized. The limit of the FormDesigner is reached,
however, when it comes to program flow or logic. This cannot be standardized and it remains
a programmer's task to adapt generated source code in order to integrate it into an application
program.

But in programming there are situations common to many applications. Moving the record
pointer is an example. For this, a set of predefined pushbuttons can be selected in the
FormDesigner and inserted in the form. The following lines of code are an example for a
pushbutton that moves the record pointer to the next record:

oXbp := XbpPushButton():new(drawingArea, , {12,12}, (72,24})

oXbp:caption := "Next"
oXbp:create ()
oXbp:activate :- {|| Gather(aEditControls), ;

CUSTOMER->(DbSkip(1)), ;
Scatter(aEditControls) }

In this case, the program is controlled by the :activate code block which is evaluated when
the pushbutton is clicked. The function Gather() writes the current values from the form into
the database. Then, the record pointer is moved by the DbSkip() function, and finally values
from the new record are transferred to the form with the Scatter() function. The new values
are then visible on the screen.

The most important aspects of the FormDesigner can be summarized as follows:

1. The FormDesigner generates source code based on the visual representation of a form.

2. The sequence of Xbase Parts in a form must be adjusted to correspond with user
interaction.

3. Source code that controls program flow is created to a very limited extent. There is

only a set of pushbuttons which perform common tasks with their :activate code block.

4. The generated source code must be modified when integrating it into an application
program.

Alaska Xbase ' * Basic Users Guide

CLASS Code

5.4. CLASS Code

The Xbase* FormDesigner is able to create source code for a form in object-oriented style.
This includes the declaration of a class (whose instances display the form) plus code for the
:init() and :create() methods. For the creation of object-oriented code, the same rules are
valid as for functional code (refer to the previous section). The sequence of Xbase Parts in
the form must be checked. In addition, symbols for instance variables of the class should be
defined. If they are not defined, the FormDesigner creates default identifiers for instance
variables from the class name of an Xbase Part plus a digit, or it uses field names as symbols
when an Xbase Part accesses a database field. In order to get code with good readability, the
names (symbols) of instance variables should be edited prior to generating the source code.
This is accomplished in the symbols window (menu items: Edit->Symbols for iVar).

The object-oriented code takes advantage of inheritance. Two PRG files are created, each of
which contains the code for one class. The first file contains the implementation level of the
form while the second one provides the utilization level. The code is split into two files and
one class (utilization level) is derived from the other one (implementation level). For the
example form, discussed in the previous section, two files exist in the
.\SAMPLES\BASICS\XPPFD directory: SAMPLE2.PRG and _SAMPLE2.PRG. Both
contain code to create one class.

Tmplementation level

File name : _SAMPLE2.PRG
Declaration: CLASS _CustomerForm FROM XbpDialog

Utilization level

File name : SAMPLE2.PRG
Declaration: CLASS CustomerForm FROM _CustomerForm

For the creation of the sample code the file name SAMPLE2.PRG and class name
CustomerForm were used. The FormDesigner prefixes both names with an underscore and
uses the resulting identifiers for the source code that builds the implementation level of a
form. The implementation level class has instance variables for each Xbase Part contained in
the form. In addition, instance variables for each accessed database plus the instance variable
:editControls are declared. The source code of the sample form for the implementation level
is given below:

CLASS _CustomerForm FROM XbpDialog
EXPORTED:
VAR editControls

* Contained control elements

Alaska Xbase* * Basic Users Guide 49

CLASS Code

VAR GroupBox

VAR Staticl

VAR Lastname

VAR Static2

VAR Firstname

VAR ButtonNext

VAR ButtonPrevious
VAR ButtonOK

* Work area / alias
VAR CUSTOMER

METHOD init
METHOD create
ENDCLASS

In addition to instance variables, the methods :init() and :create() are declared. They
initialize the form and request system resources for it. The source code for these methods is
created by the FormDesigner. Both methods have the same parameter profile as other Xbase
Parts. Default values for all parameters are defined in the :init() method.

METHOD _CustomerForm:init(oParent, oOwner, aPos, aSize, aPP, lVisible)

DEFAULT oParent TO SetAppWindow () :setParent(), ;
aPos TO {148,98}, ;
aSize TO {334,182}, ;
1Visible TO .F. , ;
abPP TO {}

AAdd (aPP, { XBP_PP_BGCLR, GRA_CLR_PALEGRAY })

AAdd (aPP, { XBP_PP_COMPOUNDNAME, "8.Helv.normal" })
::XbpDialog:init (oParent, oOwner, aPos, aSize, aPP, 1lVisible)
: :XbpDialog:drawingArea:ColorBG := GRA_CLR_PALEGRAY

: :XbpDialog:border := XBPDLG_SIZEBORDER

::XbpDialog:title := "New Form"

The default value for oParent (the parent window) is given by the expression
SetAppWindow():setParent(), which is the desktop window in general. At this point, the same
assumption is made as in functional code. If the desktop window should not be used as parent
window, the parent must either be explicitly specified or the code of the :init() method must
be adjusted (Note: if the form should be used as application window, an instance of the class
is to be created in AppSys() and the return value of SetAppWindow() must be used as parent
window. This function returns the desktop window when a program starts).

The major task of the :inif() method is to initialize the super class (XbpDialog) and all
contained Xbase Parts. The code for the initialization of Xbase Parts is very similar to
functional code as described in the previous section. The only difference is that object

Alaska Xbase '+ Basic Users Guide

CLASS Code

references are assigned to instance variables instead of LOCAL variables. The following
lines of code show a comparison of functional and object-oriented code which create the
Group box in the sample form:

Functional code

oXbpl := XbpStatic():new(drawingArea, , ;
(12,48}, {300,96})

oXbpl:caption := "Customer"

oXbpl:type := XBPSTATIC_TYPE_GROUPBOX

Object-oriented code

: : GroupBox := XbpStatic():new(::drawingArea, , ;
{12,48}, {300,96})

: :GroupBox:caption := "Customer"

: :GroupBox:type := XBPSTATIC_TYPE_GROUPBOX

In functional style the LOCAL variables oXbp! and drawingArea are used, whereas the
object-oriented code uses the instance variables ::GroupBox and ::drawingArea to store
references to Xbase Parts. ::GroupBox is declared in the _CustomerForm class and
::drawingArea is an instance variable of the super class XbpDialog (Note: ::GroupBox is an
abbreviation for self:GroupBox, ::drawingArea is the abbreviation for self:drawingArea).

The code that initializes Xbase Parts, which access database fields, is also similar in
functional and object-oriented style:

Functional code

oXbp := XbpSLE():new(oXbpl, , {96,48}, {192,24})
oXbp:bufferLength := 20
oXbp:tabStop := .T.
oXbp:dataLink := {|x| IIf(PCount()==0, ;

Trim(CUSTOMER->LASTNAME), ;

CUSTOMER->LASTNAME := x) }

oXbp:create() :setData()
AAdd(aEditControls, oXbp)

Object-oriented code

::Lastname := XbpSLE() :new(::GroupBox, , {96,48}, {192,24})
::Lastname:bufferLength := 20
::Lastname:tabStop := .T.
::Lastname:datalLink := {|x| IIf(PCount()==0, ;
Trim((::CUSTOMER)->LASTNAME) , ;
(::CUSTOMER) ->LASTNAME := x) }
AAdd(::editControls, ::Lastname)

Alaska Xbase* + Basic Users Guide 51

CLASS Code

In object-oriented code, the XbpSLE object is referenced in the ::Lastname instance variable.
It has the same name, or symbol, as the database field that is edited by the XbpSLE object.
When an Xbase Part accesses a field, the FormDesigner uses the field name as identifier for
the corresponding instance variable by default.

The code for the :dataLink code block is also different in object-oriented code. Access to a
field is programmed as (Alias)->Fieldname and the work area is determined by the contents
of an instance variable. Functional code uses literal field names and aliases like
Alias->Fieldname.

The final difference between functional and object-oriented code is the call to the :create()
and :setData() methods. In functional code, both methods are called in the very same line of
the program. In object-oriented code, these methods are called in two different classes: the
method :create() is called in the _CustomerDialog class (Implementation level,
_SAMPLE2.PRG) and :setData() is executed in the CustomerDialog class (Utilization level,
SAMPLE2.PRG).

File: _SAMPLEZ2.PRG (Implementation level)
CLASS _CustomerForm FROM XbpDialog

METHOD _CustomerForm:create(...)
::XbpDialog:create(...)

<...>
::Lastname:create()
<...>

RETURN self

File: SAMPLE2.PRG (Utilization level)
CLASS CustomerForm FROM _CustomerForm
METHOD CustomerForm:create(...)

* Execute method of the super class
::_CustomerForm:create(...)

// Path is abbreviated only in the documentation
* Open databases and assign work area
USE . .\SAMPLES\BASICS\XPPFD\CUSTOMER.DBF NEW EXCLUSIVE

: :CUSTOMER := Select ()

* Transfer values to EditControls
AEval (::EditControls, { | oXbp | oXbp:SetData() })

* Display the form

52 Alaska Xbase ' * Basic Users Guide

CLASS Code

: :show ()

RETURN self

The file _SAMPLE2.PRG contains the class declaration for the sample form plus the code
required to create all Xbase Parts contained in the form. The file is the implementation level
of the form. To utilize a form, it is necessary to open databases and to transfer values from
the current record into the form. This is the task of a derived class. It is programmed in the
file SAMPLE2.PRG and provides the utilization level of the form.

The source code for the utilization level may (and should) be modified when it is integrated
into an application program. For instance, the file name of the database appears as literal
name after the USE command and includes drive and path. This linc definitely must be
changed to reflect the situation in an application program. Whether or not databases are
opened in the :create() method, or are already open when this method is called, must be
decided by a programmer. The FormDesigner cannot solve such questions. It only makes sure
that the generated code can be compiled in order to test the form in an isolated executable
file.

To test the object-oriented code of a form, it is necessary to declare a Main procedure. This is
optionally being done by the FormDesigner when the corresponding switch is set in the
Settings window (check box: Main procedure for class code). In this case, the Main
procedure is written to the file that contains the utilization level of a form. In the example,
this is the file SAMPLE2.PRG. The Main procedure creates a form and processes events
within a DO WHILE loop:

Ak kA kA kAR kA kAR KR A KA KR A AR A ARk kA Ak Ak hkhkhk A Ak Ak kA Ak AR F ARk kk kA kkkhkk ok k

* Main procedure to test a form
Ak hk kX hkhk Ak kA Kk kk Ak kkkkhkkkkhkhk kA kkkhkkkhkk kA khkk kA kkkhhkkkkhk Ak kkkk k%
PROCEDURE Main

LOCAL nEvent, oXbp, mpl, mp2

CustomerForm() :New () :Create()

DO WHILE nEvent != xbeP_Close
nEvent := AppEvent (@mpl, €mp2, GoXbp)
oXbp:HandleEvent (nEvent, mpl, mp2)
IF nEvent == xbeP_Quit

QUIT // AppQuit ()

ENDIF

ENDDO

RETURN

* Include program code for the implementation-level class of the form
#include "_SAMPLE2.PRG"

// EOF
111117

Alaska Xbase* * Basic Users Guide 53

Using CLASS Code

The main procedure, as generated by the FormDesigner, is only intended to test a form. Prior
to the event loop, the class is instantiated without even assigning the object reference to a
variable. The expression CustomerForm():New():Create() creates the form as defined in the
class and stores the object reference in the child list of the application window

(-> SetAppWindow():childList()[1]).

To create an executable file for testing a form, two PRG files must be compiled and linked
(SAMPLE2.PRG and _SAMPLE2.PRG). This is accomplished by including the file
containing the implementation level (_ SAMPLE2.PRG) in the file with the utilization level
(SAMPLE2.PRG). When the compiler compiles the file SAMPLE2.PRG, the preprocessor
already has processed the #include "_SAMPLE2.PRG" directive and only one file needs to be
compiled. This file contains the declaration for both classes, CustomerForm and
_CustomerForm.

5.5. Using CLASS Code

To integrate the object-oriented code into an application program, it may (and should) be
modified. It is recommended to make changes only in the file that contains the source code
for the utilization level of a form. Then it is possible to change the form at a later point in
time and have the FormDesigner generating new source code that reflects any changes. If a
form is changed after source code is generated, the Form Designer generates only code for
the implementation of a form. The file that contains the utilization level, or application
specific code, remains unchanged.

An example of how object-oriented code can be changed is the file SAMPLE3.PRG which is
located in the .\SAMPLES\BASICS\XPPFD directory. The CustomerForm class from
SAMPLE2.PRG is modified in such a way that the form can be used in a multi-user
environment. Three methods are added to the class declaration and code for these methods is
implemented.

CLASS CustomerForm FROM _CustomerForm
EXPORTED:
METHOD init
METHOD create

* Application specific methods (they are user-defined)
METHOD skip
METHOD setData
METHOD getData
ENDCLASS

Before the record pointer is moved, all data changed in a form must be written to the
database. In a multi-user environment this requires the record to be locked before it can be
written to. This program logic is realized as application-specific code in the new methods

54

Alaska Xbase * Basic Users Guide

Using CLASS Code

:skip(), :setData() and :getData() and is the only difference between the files
SAMPLE2.PRG and SAMPLE3.PRG. The :inif() method ensures that the new methods are

executed:
METHOD CustomerForm:init(oParent, oOwner, aPos, aSize, aPP, lVisible)

* Execute method of the super class
. :_CustomerForm:init (oParent, oOwner, aPos, aSize, aPP, lvVisible)

* Change code blocks for pushbuttons

: :ButtonOK:activate := {|| ::getDatal),;

PostAppEvent (xbeP_Close) }
::ButtonPrevious:activate := {|| ::skip(-1) }
: :ButtonNext:activate = {1 ::skip(1) }

RETURN self

The pushbuttons contained in the form are referenced in instance variables which are
declared in the _CustomerForm class (_SAMPLE2.PRG). The :activate code blocks are
changed, so the new methods will be executed when a user clicks a pushbutton. The
implementation of the new methods requires only a few lines of code:

METHOD CustomerForm:skip(nSkip)

IF ::getData() // Write record
(::CUSTOMER) -> (DbSkip(nSkip)) // Change record pointer
::setDatal() // Read record

ENDIF

RETURN self

METHOD CustomerForm:setData
AEval(::editControls, {lol| o:setData() })
RETURN self

METHOD CustomerForm:getData

LOCAL 10k := (AScan(::editControls, {lol| o:changed }) == 0)
IF ! 10k // Data is changed
10k := (::CUSTOMER)->(DbRLock()) // Lock record
IF 10k // Record is locked
AEval(::editControls, {lol o:getData() })
(::CUSTOMER) -> (DbUnlock()) // Unlock record
ELSE
MsgBox("Record is currently locked")
ENDIF
ENDIF
RETURN 10k

Alaska Xbase* * Basic Users Guide

Using CLASS Code

The :skip() method navigates the record pointer in this example only if changed data in the
form is written to the database. This, in turn, depends on a successful record lock which is set
in the :getData() method. If data is unchanged, no locking occurs and the record pointer is
always moved. When the record pointer is changed, the :setData() method transfers data
from the database into the form.

Alaska Xbase * Basic Users Guide

The Xbase ' * compiler - XPP.EXE

6. The Xbase*+ compiler - XPP.EXE

The Xbase** compiler can be started by entering XPP on the command line. The general
syntax of the call to the compiler is as follows:

XPP [<Options>] <PRG-file> // or
XPP <PRG-File> [<Options>]

<PRG-File> indicates the file name of the source code file the to compile. If the file name is
specified without an extension, .PRG is used as the file extension. <Options> set switches to
control the compile process. A compiler switch always starts with a slash ("/") or a hyphen
("-") (see below).

The program XPP.EXE contains two components: the preprocessor and the actual compiler.
XPP.EXE translates a source code file in ASCII format to an OBJ file in binary format. The
translation of the source code occurs in two steps. First the preprocessor translates the program
code within the PRG file into modified code which the compiler "understands". Then the
compiler creates an OBJ file which the linker is able to link into an executable program.

The result of the preprocessor can be output as a separate file with the extension PPO (PPO
stands for preprocessed output) using the compiler switch /p. A PPO file is an ASCII file
containing the code that the compiler actually compiles. The preprocessor prepares program
code for the compiler and the compiler converts the prepared code into an OB file.

6.1. Compiler switches

The compilation of ASCII program code (either a PRG file or a PPO file) into binary
program code can be controlled in specific ways using compiler switches. These switches
must be specified along with the file name of the source code file when XPP.EXE is called.
The following switches (<Options>) are valid for the compiler:

? Display information about all compiler switches. The /? switch only
provides information and can not be combined with other switches.

/a Automatic MEMVAR declaration

When this switch is used, all variables specified with PRIVATE,
PUBLIC or PARAMETERS are explicitly declared as MEMVAR.

/b Insert debug information

When /b is used, debug information is written into the resulting
OB file. This includes row numbers, names of lexical variables,

Alaska Xbase* * Basic Users Guide 57

Compiler switches

[coff

/com

ld<id>[=<val>]

/dII[:DYNAMIC]

the source code file name and other information.

If the /b switch is not included, the debugger can not display
information about the program source code at runtime of the
resulting Xbase** program. The debug information increases the
size of both the OBJ file and the executable EXE file. For this
reason, the final version of a program should be compiled and
linked without /b.

Creates object files in Common Object File Format (COFF)

The Xbase** compiler creates COFF object files if the switch /coff
is set. On Windows platforms, this switch is activated by default.
To create OMF object files, the /omf switch must be used.

Use compatibility mode

In the compatibility mode, all identifiers (names) for functions,
procedures, methods and variables are considered significant by the
compiler only up to a maximum of 10 characters. The /com switch
activates this mode. It should only be set when compiling Clipper
programs with function names that are actually longer than

10 characters but abbreviated using only the first 10 characters.
The side effect of the /com switch is that all Xbase** functions with
identifiers more than 10 characters long can no longer be called.

#define <id>

The /d switch specifies the #define constant <id> to the compiler on
the command line. The #define constant is valid within the source
code file. Optionally, the constant can be assigned the value <val>.

Create OB file for a DLL file

The /dll switch directs the compiler to include additional
information necessary for the creation of a DLL file in the OB]J file.
All OBJ files which are to be linked into a DLL file must be
compiled using /dll. If the linker will create an EXE file, the switch
must not be used.

Important: If a DLL file is to be loaded and released during
runtime of an Xbase* application using the functions DIllLoad() and
DllUnload(), the additional keyword :DYNAMIC must be

specified.

Alaska Xbase* * Basic Users Guide

The Xbase* * compiler - XPP.EXE

lerr:<count>

les

/ga

/go

fi<path>

Terminate compiling after <count> errors

By default, the compiler terminates the compile process as soon as
it registers 20 program errors. This value can be changed using the
ferr: switch. <count> specifies the maximum error count before
compiler termination.

In some cases the number of 20 errors is reached very quickly.
When the compiler detects a syntax error it tries to find the next
entry point in the source code to continue the compile process with
the remaining code. If no entry point is found after an initial error
the compiler reports additional syntax errors even if the code is
correct.

Creates a operating system error code for warnings

When the switch /es is set the compiler creates an OS error code
already for warnings and not when a syntax error is detected.

Converts literal strings to ANSI

When the /ga switch is set, all literal character strings in the
PRG source code are converted to ANSI before the compiler
creates the OB file.

Converts literal strings to OEM

When the /go switch is set, all literal character strings in the
PRG source code are converted to OEM before the compiler
creates the OBIJ file.

Search directory for #include files

The /i switch specifies an additional search directory <path> for
the compiler to use when locating #include files. Normally, the
compiler only searches for these files in the current directory and
those directories specified by the INCLUDE environment variable.

Insert no line numbers

If the /1 switch is used, no line numbers are included in the OBJ file.
This decreases the size of the executable EXE file, but has the
disadvantage that it disables ability of the function ProcLine() to return
line numbers. If /1 is used and a runtime error occurs, it will not be
possible to determine which line in the source code caused the error.

Alaska Xbase* * Basic Users Guide

59

Compiler switches

Mlink[:" options"']

/m

/n

/mod

/o<name>

Creates an EXE from the object file

The /link switch causes the compiler to start the linker when the
OBI file is successfully created. In this way it is possible to create
an EXE file from a single PRG file by invoking the compiler only.
Options for the linker can be specified with the /link switch as well.
They must be enclosed in double quotes and are passed on to the
linker.

Ignore SET PROCEDURE TO (ProcRequest)

The /m switch prevents automatic insertion of additional source
code files (PRG files) which are specified using the command SET
PROCEDURE TO. Since SET PROCEDURE TO is purely a
compatibility command, the /m switch does not generally need to be
used.

No implicit start procedure (MAIN)

If program code is found in a source code file outside a
FUNCTION, PROCEDURE or METHOD declaration, this
program code is implicitly condensed in the procedure MAIN().
This default behavior can be suppressed by the /n switch. The
compiler then creates error messages if it finds program code
outside of a FUNCTION, PROCEDURE or METHOD declaration.

No default library in OBJ file

If the /nod (no default library) switch is used, the name of the file
XPPRT1.LIB is not implicitly included in the OBJ file. The linker
then only uses the LIB files specified with the /r switch.

Rename OB]J file

Normally, the compiler creates an OBJ file which has the same file
name as the PRG file it is created from. The /o switch is used to
rename the resulting OBJ file to <name>. If a different path is used
in <name>, specifying the path name is sufficient. The name of the
path must be terminated using a backslash \. The OBJ file is then
created in the specified path with the same file name as the PRG
file.

60

Alaska Xbase ' + Basic Users Guide

The Xbase' * compiler - XPP.EXE

/omf

Ip

/pre[:<min>]

/q

/r<libname>

Creates object files in Object Module Format (OMF)

The Xbase* compiler creates OMF object files if the switch /omf is
set. On the OS/2 platform, this switch is activated by default. To
create COFF object files, the /coff switch must be used.

Create preprocessor output (PPO file)

If the /p swtich is included, the compiler creates a PPO file
containing the preprocessor output in addition to creating the OBJ
file. The file has the same name as the source code file, but has
PPO instead of PRG as the file extension. A PPO file can be used to
determine whether user defined commands are correctly translated
by the preprocessor.

Load DLL files of the compiler

The /pre (preload) switch indicates that all DLL files used by the
compiler are loaded into main memory and remain available in
memory after the compile terminates. A time interval in minutes can
optionally be specified using :<min>. When no compiling process
has taken place after :<min>, the DLL files are automatically
removed from memory. The defauit value for :<min> is 10 minutes.
This means that if no time interval is specified, the DLL files are
removed from memory after 10 minutes.

/pre is used to avoid the time consuming loading and removing of
the DLL files in the path \XPPW32\BIN and accelerates repeated
compiling.

No screen display during the compiling (quiet)

The /q switch suppresses the display of line numbers during
compilation. This allows the compiler to work faster.

Specify LIB file for linker

The /r switch is used to specify an additional library <libname> for
the linker to search in order to resolve external references when
linking the OBYJ file. By default, the linker searches the file
XPPRT1.LIB and it does not need to be explicitly specified unless
the /nod switch is used.

Alaska Xbase* * Basic Users Guide

61

Compiler switches

/s

/u[<name>]

v

Iw

Iwi

fwl

/wu

Only test syntax

If the /s switch is used, the compiler merely performs a syntax
check of the source code file and does not create an OB file.

Use user-defined STD.CH

The /u switch defines the #include file <name> as a replacement for
the file STD.CH which is included by default in all source code
files during compilation. A programmer who only uses commands
to a very limited extent can copy these commands from the file
STD.CH to another file and specify this file as the default using /u.
This saves time when the preprocessor reads the #include file. If
<name> is not specified, no default #include file is used.

Treat undeclared variables as MEMVAR

By default the compiler treats undeclared variables which are not
preceded by alias names as field variables. The /v switch causes the
compiler to treat these undeclared variables as dynamic memory
variables. These variables then receive the alias name
MEMVAR->.

Display warnings

The /w switch causes the compiler to output warnings on the screen
when it detects undeclared variables which are not preceded by
alias names.

Display warnings for non-initialized variables

The /wi switch produces warnings for all variables which are not
initialized and appear in expressions where the variables must have
a value.

Display warnings for non-lexical variables

The /wl switch produces warnings for all variables which are not
declared as LOCAL or STATIC or included in the formal
parameter list of functions, procedures and methods.

Display warnings for unused lexical variables

The /wu switch produces warnings for all lexical variables which

62

Alaska Xbase* ' Basic Users Guide

Examples for the Xbase' * compiler

are declared and not used.
/z Turn off logical short-cut optimization

The /z switch turns off the default "short-cut” optimization for the
logical operators .AND. and .OR.. Without optimization, all
expressions which are combined using logical operators are
evaluated. With optimization, combined expressions are evaluated
only until the result of the overall expression is clearly determined.

6.2. Examples for the Xbase**+ compiler

The following example performs a syntax check for the file MAIN.PRG and writes the
preprocessor output into the file MAIN.PPO without displaying line numbers.

XPP MAIN /s /p /a4

The next example creates the file TEST.OBJ including debug information. The OBJ file is
written to the path \XPPAOBJ\. No implicit MAIN() procedure is created and warnings are
displayed on the screen during compilation:

XPP TEST /b /n /w /o\XPP\OBJ\

Constants defined by the compiler

By default, the Xbase* compiler defines two constants: one to identify the compiler and the
other one to identify the operating system. This allows program code specific for a compiler
or an operating system to be excluded from compilation, using the directives #ifdef, #ifndef,
#else and #endif. The #define constants are:

#define __ XPP_ // Xbase++
#define __0S2_ // 0S/2 version
#define _ WIN32___ // Windows 32 bit version

For example, if the same PRG file is to be compiled by Xbase* and Clipper, there may be
situations where both compilers behave differently. Such conflicts can be resolved as follows:

#ifdef _ XPP__
<Xbase++ Code>
#else
<Clipper Code>
#endif

In this way, program code for different compilers can be maintained in the very same PRG
file.

Alaska Xbase* * Basic Users Guide 63

Version information

6.3. Version information

The utility program XPPLOAD.EXE can explicitly load all compiler DLL files into main
memory without actually starting the compiler. It displays version information when it is
invoked on the command line as follows:

XPPLOAD version

64 Alaska Xbase - * Basic Users Guide

The Xbase' ' Debugger - XPPDBG.EXE

7. The Xbase++ Debugger - XPPDBG.EXE

This chapter describes the debugger provided with Xbase*. The debugger is a powerful tool
for program development and helps the programmer find errors in applications running in the
VIO, hybrid, or GUI mode. The debugger itself runs in an XbpCrt window and is primarily
written in Xbase*.

7.1. Basics of the debugger

The Xbase* debugger is started by entering XPPDBG on the command line and runs as an
independent process. If the filename of an Xbase** application is specified as a command line
argument, this application is started as another process and debug information about the
Xbase+ application can be displayed. For debug information to be available, all of the PRG
files of the Xbase** application must have been compiled using the compiler option /b and the
resulting OBJ files linked using the linker option /DE. Otherwise no debug information is
available.

The debugger primarily displays debug information about the source code of the application
being executed and controlled by the debugger. Any memory variable can be displayed and
its contents edited at runtime using the debugger. This is possible whether the variable is
declared LOCAL, STATIC, PRIVATE, or PUBLIC. The debugger can also display the
callstack, that lists all default user-defined functions, procedures, and methods.

The debugger can interrupt the running application and control the application via
breakpoints or using single step mode (this means the source code of the application is
processed line by line). Breakpoints automatically interrupt the application and reactivate the
debugger. This allows the application to be run step by step to limit and localize the location
of an error. The debugger also includes a command line where valid Xbase* expressions can
be executed within the application.

Navigating within the debugger is done using the mouse or short-cut keys. The most
important short-cut keys are F8, F5 and the key combination Ctrl+S. F8 executes the next
source code line of the application when in single step mode. The F5 key ends the single step
mode of the debugger and returns control back to the application until the debugger is
reactivated using Ctrl+S (stop application) or a breakpoint is reached. Most other aspects of
the debugger are menu driven. The current activity of the debugger is shown by a colored
area within the menu bar. Red means the debugger is inactive and the application is running.
Green means the debugger is active and controls the application.

Important note: When the application is active, the application can only be interrupted
using the key combination Ctrl+S when program code is being executed in the application. If
the application is in a wait state, it is not executing code. This happens during WAIT,

Alaska Xbase ' * Basic Users Guide 65

The menu system of the debugger

Inkey(0), and AppEvent(). As long as the application is waiting for keyboard entry or an
event, the debugger can not intervene in the application since no code is being executed in
the application. In this case, the window of the application must be brought into the
foreground and a key pressed if necessary so that the application ends the wait state. Only
then can the debugger regain control.

7.2. The menu system of the debugger

The main menu of the debugger is always visible as the top line of the debugger window. It
contains the following menu items:

File

Run

Monitor

Commands

Options

Help

Activates the file menu. This allows navigation within the code window,
selects application source code files for display in the code window and
terminates the debugger.

Activates the run menu. Run menu options control how the application is run,
restart the application and can select another Xbase** application to debug.

Activates the monitor menu. This opens or closes the monitor window for
displaying memory variables and the callstack window for displaying the

active functions and procedures.

Activates the command menu. Command menu options control the command
window of the debugger and allow breakpoints to be set or deleted.

Activates the options menu. This menu configures the debugger and allows
the current configuration to be saved.

Displays a help window.

7.2.1. File menu

The file menu contains options that specify the source code file displayed in the debugger's
code window and what section of the source code is visible.

Open module

This option opens a file dialog that lists all the PRG files containing
source code. A selection is made in the window using the Return key
or by double clicking the highlighted item. The selected PRG file is
displayed in the code window of the debugger and breakpoints can be
set in this file using the F9 key or Return.

A selection window can also be opened containing a list of all

66

Alaska Xbase* * Basic Users Guide

Run menu

Goto Line

Goto Function

Where

Exit

functions, procedures, and methods contained in the PRG file. This
selection window is opened by clicking the right mouse button or
using the key combination Ctrl+Return after a PRG file is selected.

This option opens an input window that allows specification of a line
number for the debugger to display in the code window.

This option displays the source code of any function or procedure in
the code window. If the source code for the function is not in the PRG
file that is currently displayed in the code window, the debugger
opens the appropriate PRG file. If several functions with the same
name exist (STATIC FUNCTION) the debugger displays the source
code of the first function it finds with the specified name.

This option displays the current program line being executed in the

code window. The appropriate PRG file is loaded if it is not already
visible. This option performs the same functions as "Open module"

and "Goto ..." to reposition the source code on the current line after
the code window is scrolled or another window is opened.

This option terminates the debugger.

7.2.2. Run menu

This menu contains options to control the Xbase** application. This includes selecting and
restarting the application.

Restart

Startup

Step

Trace

This option terminates and then restarts the current Xbase** application.

The option terminates the current application and opens a window where
an application file name can be entered. This allows a different Xbase**
applications to be debugged without terminating and restarting the
debugger.

The short-cut key for this option is F8. Either selecting the menu option
or pressing F8 executes the next program line in the application source
code.

The short-cut key for this option is F10. Pressing F10 and selecting this
menu option both cause all functions and procedures called by the
current program line to be completely executed before the debugger
pauses program execution on the next line. This skips stepping through
the source code of the calling function or procedure.

Alaska Xbase* * Basic Users Guide 67

Monitor menu

Goto Cursor

Step Back

F5 is the short-cut key for this option. This returns control to the
application and turns the debugger off. The debugger can only regain
control by being reactivated with the key combination Ctrl+S or if a
breakpoint occurs. If Ctrl+S is pressed, the debugger window receives
input focus, meaning it must be in the foreground. If the debugger does
not display a "green light" after Ctrl+S, the application is in a wait state
condition and does not execute any code. In this case the application
must receive an event so that it leaves the wait state. The easiest way to
accomplish this is to click on the application window with the mouse and
if necessary press a key.

F7 is the short-cut key for this option. The debugger lets the program
code of the application run to the current line in the code window and
then interrupts program execution. This menu option and the F7 key set
the current line in the code window as a temporary breakpoint.

The short-cut key for this option is F4. This option effectively uses the
line after the current procedure or function as a break point. When
pressed, the current procedure or function runs to completion. The
debugger interrupts the program as soon as the current function is
terminated. It then positions the code in the code window on the next
line of the source code file that called the function or procedure that was
active when F4 was pressed.

7.2.3. Monitor menu

This menu includes options to open windows for viewing memory variables and/or the
callstack. The information in the windows is automatically updated while the application is
running. When the monitor window is active, a variable can be selected with a double click
and then edited. The corresponding PRG file is automatically loaded into the code window
when any one of the functions or procedures in the callstack window is double clicked with
the left mouse button.

Local

Static

Private

Public

Callstack

Turn the display of variables of the LOCAL storage class on or off.
Turn the display of variables of the STATIC storage class on or off.
Turn the display of variables of the PRIVATE storage class on or off.
Turn the display of variables of the PUBLIC storage class on or off.

Turn the display of the callstack on or off.

68

Alaska Xbase " * Basic Users Guide

Commands menu

7.2.4. Commands menu

The command window is opened or closed using options in this menu. This window displays
the result of all expressions entered on the command line of the debugger. It also records the
expression entered and their result. The up arrow key can be used to retrieve a previously
entered expression which can be executed again by pressing Return. In addition to managing
the command window, the menu also manages breakpoints. A breakpoint designates a line in
the source code of the application where the program is automatically interrupted. If a
breakpoint is reached while the application is running, the debugger is reactivated and regains
control.

Toggle Breakpoint F9 is the short-cut key for this option. Alternatively, the
Return key can be pressed. This option defines the
current line in the application source code as a
breakpoint or clears a previously defined breakpoint on
this line. Whether or not a line is defined as a
breakpoint is indicated using the character » , which
appears at the beginning of the source code line in front
of the line number.

Delete All Breakpoints This option deletes all of the defined breakpoints in all
source code files.

List Breakpoints This option lists all defined breakpoints in all source
code files.

Open Command Window This option opens the command window. Expressions
can then be entered on the command line of the
debugger. When the command window is already
opened, this menu option is replaced with "Close
Command Window".

Clear Command Window This option deletes all the lines previously recorded in
the command window.

7.2.5. Options menu

This menu allows several aspects of the debugger to be configured or the current window
configuration to be stored. Configuration data is saved in a file with the extension . @@ @
and the same file name as the EXE file. If this file exists in the current directory, it is read by
the debugger and used for configuration.

Debug Program Startup If this option is selected, the debugger also displays the
program code executed before the call to the Main

Alaska Xbase* * Basic Users Guide 69

Help menu

procedure. This displays the functions AppSys(),
DbeSys() and any other INIT PROCEDURE.

Check Time Stamps This option can be turned on or off. If it is activated, the
debugger compares the time stamp of the source code
files of the application with the time stamp on the
executable files and gives a warning if the executable
files (DLL and EXE files) are older than one of the
source code files.

Set Tab Width This option specifies the number of blank spaces that are
used to replace tab characters when displaying source
code in the code window of the debugger.

Save Restart Info This option saves the current debugger configuration and
all current breakpoints. The file created has the same file
name as the application and the extension ".@ @ @". If
XPPDBG -n <EXE-file> is specified on the command
line, the debugger ignores the saved information and
does not load the @ @ @ file.

7.2.6. Help menu

This menu contains options that display help information for the debugger.

Short Help This option opens a small help window that displays the short-cut keys
for controlling the debugger.

7.3. Working with the debugger

The debugger's purpose is to help the programmer find and resolve program errors. This
section discusses the capabilities offered by the debugger and offers advice on how to locate
errors. Program errors leading to program termination must be differentiated from those that
can not be identified by the runtime system. Errors that cause program termination are
relatively easy to locate, since the default error handling routine displays information about
the type and location of the error on the screen. The most important information for locating
a runtime error is the name of the routine and the source code line number in the PRG file
where the error occurred. If the reason for the error is not obvious, a breakpoint can be set on
this line in the debugger and the conditions leading to the runtime error examined with the
debugger.

70

Alaska Xbase " * Basic Users Guide

Setting breakpoints

7.3.1. Setting breakpoints

The debugger is started by entering XPPDBG <EXE file> on the command line. It loads the
executable file <EXE file> and stops the Xbase** application on the first executable program
line. An implicit breakpoint is set on this line. If a runtime error occurs, the debugger
identifies the name of the routine where the error occurred along with the line number in the
PRG file. To set a breakpoint at this line, the option "Open Module" is selected in the file
menu. This displays a selection window containing the names of all the PRG files. After the
highlight is positioned on the name of the file where the routine causing the error is found,
clicking the right mouse button on the highlighted file (or the key combination Ctrl+Return)
will open a second window listing all the routines contained in the PRG file. The routine that
generated the error can be selected from this list. Double clicking with the left mouse button
or pressing the Return key opens the corresponding PRG file and positions the code window
to the selected routine.

Within the code window the highlight should be positioned on the program line where the
error occurred. A breakpoint is set by double clicking the left mouse button on the
highlighted line or by pressing F9 or the Return key.

A debug session generally starts by setting breakpoints. Any number of breakpoints can be
set. The option "Save Restart Info" can be selected in the options menu to save the
breakpoints from one execution of the application to the next. The line numbers of the
breakpoints are then saved in a file with the same file name as the application and the
extension ".@@@".

After breakpoints are set, the application is run by pressing the F5 key. The colored area in
the menu bar of the debugger changes from green to red. This indicates that the application,
and not the debugger, has input focus. The debugger interrupts the application and regains
control as soon as a breakpoint is reached. The colored highlight then changes from red back
to green.

7.3.2. Inspecting errors

As soon as the debugger has interrupted the application at a breakpoint, the current status of
the application can be more closely examined. The monitor window is opened from the
monitor menu to display the contents of all visible variables. Variables are organized based
on their storage class (LOCAL, STATIC, PRIVATE and PUBLIC). If a variable has an
incorrect value, it can be changed using the debugger. To do this, the monitor window is
selected by clicking the left mouse button or using the Tab key. Within the monitor window
the highlight must be positioned on the corresponding variable. An edit window is then
opened by clicking the left mouse button or pressing Return. The value of the variable can be
edited in this window. The edit window is closed by selecting OK.

Variables with the data type character, numeric, date or logical can be displayed in an entry
field where they can be edited. The display uses Xbase** syntax. Code blocks can not be
displayed but can be modified. When changing a value, pay careful attention to the syntax.

Alaska Xbase* * Basic Users Guide 71

Inspecting errors

For example, delimiters must be present for a character string when a value of the character
data type is edited. If the variable is a code block, the characters {ll and } must be included.
The characters entered are compiled using the macro operator and the result is assigned to the
variable.

If the variable to be edited is an array, the contents of the array elements can be viewed using
the View pushbutton. The maximum number of elements displayed is 64. Elements in an
array beyond this 64 element limit can be examined by entering the numeric index for the
first array element to display in the entry field "Start".

The edit window displays only the essential information about an object, such as the name of
the class to which the object belongs. The contents of the instance variables of an object are
displayed by pressing the View pushbutton. Only the instance variables declared in the class
are displayed. If the class is derived from other classes, the class names of the superclasses
are also displayed. Selecting a superclass displays an edit window containing the instance
variables for this class.

Only the instance variables of objects can be examined in the edit window of the debugger. In
many cases the return value of a method needs to be checked. For example, the question
might be "What is the class name of the parent of this Xbase Part?" The parent can only be
determined using the method :setParent(): it does not appear in the list of instance variables.
Problems such as this are solved using the command window of the debugger. To view the
command window the option "Open Command Window" is selected to open the command
window. Below this window the command line of the debugger is displayed and any
expressions can be entered. After pressing the Return key the expression is executed and the
result of the expression is displayed in the command window.

The parent of a particular Xbase Part can be determined on the command line of the
debugger in two ways. If the variable oXbp contains an Xbase Part whose parent information
is needed, either of the following two expressions can be used on the command line of the
debugger to determine the parent class:

oXbp:setParent () :className ()

dummy := oXbp:setParent ()

The first expression displays the class name of the parent in the command window. The
second expression creates a PRIVATE variable referencing the parent. Selecting the option
"Private” for the monitor window displays variables of the PRIVATE storage class. The
parent of oXbp is displayed as the variable "dummy". This variable can be examined with the
debugger in the manner described earlier.

72

Alaska Xbase* * Basic Users Guide

The Xbase ' * ProjectBuilder - PBUILD.EXE

8. The Xbase++ ProjectBuilder -
PBUILD.EXE

The Xbase** ProjectBuilder is a tool for managing entire software projects. A project consists
of at least one EXE file but can be comprised of several EXE and/or DLL files as well. The
description of a project is contained in a project file. This is an ASCII file with the extension
XPJ (Xbase* ProJect). It lists all necessary data for building a project. For example, names
of source files, information for compiler and linker or which executable file must be created
from which source files.

8.1. Creating a project file (XP] file)

The easiest way to create a project file is by using an ASCII file which lists the names of all
PRG sources which are part of a project. Such a file can be created with the DIR command:

DIR /b *.prg > project.txt

PBUILD @project.txt

The output of the command DIR is directed into the file PROJECT.TXT. This file can easily
be modified using a simple text editor to remove names of PRG files which are located in the
current directory but are not part of the project, for example. The ProjectBuilder
(PBUILD.EXE) reads such a file and creates from it a template for a project file with the
extension XPJ (this stands for Xbase** ProJect).

For small projects, the basic structure of a project file can also be created quickly with an
editor. The following example shows a project file for the program CUSTOMER.EXE which

needs only four PRG files:

01: [PROJECT]

02: DEBUG = yes // Project-wide definitions
03: GUI = no

04: CUSTOMER . XPJ // The root of the project
05:

06: [CUSTOMER.XPJ] // List all EXE and DLL

07: CUSTOMER. EXE // files of the project here
08:

09: [CUSTOMER.EXE] // List all sources for each
10: CUSTOMER. PRG // EXE and/or DLL file separately
11: GETCUST. PRG

12: PRINT.PRG

11: VIEWCUST. PRG

Alaska Xbase* * Basic Users Guide 73

Creating a project file (XPJ file)

The example shows the major characteristic of an XPJ file: it is divided into different
sections, each of which begins with a symbolic name enclosed in square brackets. The first
section must always be named [PROJECT]. It is the entry point for the ProjectBuilder and
lists definitions valid for the entire project. In this example, a program containing debug
information is to be created as text mode application (lines 2 and 3). At the end of the
definitions list (line 4), the name of the next section which is to be analyzed by the
ProjectBuilder appears. This section is the root of the project and lists all executable files
which are part of the project, or which must be distributed later to customers, respectively.
This includes both EXE and DLL files. Each name of an executable file is used again as the
name for another section which lists the names of the source files the executable file is
created from.

As aresult, the structure of an XPJ file represents the dependencies which exist between
source and target files of a project. For example, the beforementioned file CUSTOMER.EXE
is a target file which depends on four PRG files, or sources, respectively. Whenever a source
is changed, the target must be updated. The ProjectBuilder analyzes the dependencies
between source and target using a project file and updates an entire project to reflect the
latest changes.

The example above shows only the basic structure of an XP]J file as it can be easily created
with an editor. However, many more dependencies can exist between different files of the
same project. These include, for example, dependencies between CH->PRG, PRG->0OB]J,
OBJ->EXE or OBJ->DLL and DEF->LIB files. The ProjectBuilder is able to detect all of
these numerous dependencies automatically once the basic structure of a project file is
created. For this, PBUILD.EXE is started with the /g switch (g for generate):

PBUILD customer.xpj /g

The switch /g causes PBUILD.EXE to analyze all dependencies that exist within a project.
The ProjectBuilder then expands a (rudimentary) project file and adds all missing
information to the XPJ file. This frees a programmer from quite a lot of typing, especially for
large projects. For instance, PBUILD.EXE expands the previous example XPJ file by 20
lines. As a result, the project file grows from 11 to 31 lines:

01: [PROJECT]

02: COMPILE = Xpp // Missing compiler and linker
03: COMPILE_FLAGS = /g // information is added
04: DEBUG = yes

05: GUI = no

06: LINKER = alink

07: LINK_FLAGS =

08: RC_COMPILE = arc

09: RC_FLAGS =

10: CUSTOMER. XPJ

11:

12: [CUSTOMER.XPJ]

13: CUSTOMER. EXE

14:

74

Alaska Xbase~ * Basic Users Guide

Creating a project

15: [CUSTOMER.EXE] // Automatically created
16: // SSTART-AUTODEPEND // dependencies
17: COLLAT.CH

18: GET.CH

19: MEMVAR.CH

20: PROMPT . CH

21: SET.CH

22: STD.CH

23: CUSTOMER.OBJ

24: GETCUST.OBJ

25: PRINT.OBJ

26: VIEWCUST.OBJ

27: // SSTOP-AUTODEPEND

28: CUSTOMER. PRG

29: GETCUST. PRG

30: PRINT. PRG

31: VIEWCUST.PRG

Changes appear in the [PROJECT] section, where all missing information for compiling and
linking is added. Furthermore, the section [CUSTOMER.EXE] now contains a list of files for
which the ProjectBuilder has detected dependencies. This automatically created list is
enclosed by the markers // $START-AUTODEPEND and // $STOP-AUTODEPEND in lines
16 and 27. Both markers indicate an area in the project file which may be changed
automatically when PBUILD.EXE is called subsequently together with the /g switch.
Therefore, a project file should not be altered between these markers as changes in this area
can become lost.

8.2. Creating a project

When a project file including all dependencies is generated, a project is created, or updated,
respectively, by invoking PBUILD.EXE and specifying the appropriate project file, if
necessary. By default, the ProjectBuilder searches for the file PROJECT.XPJ in the current
directory. Therefore, each of the following possibilities create a project:

1) PBUILD
2) PBUILD customer

3) PBUILD customer.prj

In the first call, the ProjectBuilder creates the project which is described in the PROJECT.XPJ
file. The second call requires that the file CUSTOMER.XPJ be available in the current
directory (XPJ is the default extension for project files), while in the third call, a complete
filename specifies the project file. After being invoked, the ProjectBuilder analyzes the
dependencies between source and target files. If a source file has been changed since the last
call to PBUILD.EXE, i.e. if source files are newer than target files, the ProjectBuilder creates

Alaska Xbase* * Basic Users Guide 75

The [PROJECT] section in an XP) file

the corresponding targets again (EXE or DLL files). Since only changed sources are treated
by the ProjectBuilder, the time to update complex projects is therefore reduced to a great

extent.

8.3. The [PROJECT] section in an XPJ file

All information that may be listed in the [PROJECT] section is described below. Each project
file must begin with the [PROJECT] section which contains definitions valid for the entire
project (project-wide definitions):

COMPILE=

This indicates the name of the Xbase** compiler. It is always XPP.

COMPILE_FLAGS= All compiler switches to be set for compilation are defined here. Note

DEBUG=

GUI=

LINKER=

LINK_FLAGS=

OBJ_DIR=

RC_COMPILE=

RC_FLAGS=

that separate definitions OBJ_DIR= and DEBUG= exist for the
switches /o and /b.

This definition can be set to YES (debug version) or NO (non debug
version). Executable files are created accordingly with or without
debug information. An executable file must be created with
DEBUG=YES so that it can be monitored with the debugger.

If a program is to run as text mode application, GUI=NO must be set.
Whenever a program performs graphic output, be it with Gra..()
functions or by using Xbase Parts, GUI=YES must be defined.

This definition indicates the name of the linker that is used to create
EXE or DLL files from OBJ files. It is the linker that is shipped with
the operating system-specific Xbase** version.

All linker flags which are not covered by GUI= and DEBUG= are
listed in this definition. However, if the flags /PM and /DE are used
here as well, they override the corresponding definitions GUI= and
DEBUG-=.

Optionally, the directory for OBJ files can be defined. The compiler
creates OBJ files in this directory, and the linker searches it for these
files.

This definition contains the name of the resource compiler as it is
shipped with Xbase**. Normally, additional resources are used for

GUI applications only.

The flags for the resource compiler are set with this definition.

76

Alaska Xbase " " Basic Users Guide

User-defined sections in an XP) file

<SECTION> All entries in the [PROJECT] section defined without equal signs are
used as a reference to subsequent user-defined sections which are to
be analyzed by the ProjectBuilder. Normally, only one additional
section (the root section) is referenced. There must be at least one
user-defined section.

Note: Definitions listed in the [PROJECT] section are valid for the entire project. However,
they may appear in user-defined sections as well. In this case, they are valid for one section
only. If definitions are passed to PBUILD.EXE on the command line using the /d switch, all
definitions in a project file with the same name are ignored.

8.4. User-defined sections in an XP] file

After the [PROJECT] section, user-defined sections are listed in a project file. The name of
the first user-defined section (the root section) must be indicated in the [PROJECT] section,
as shown in the following example:

[PROJECT]
DEBUG = YES // project-wide definition

ROOT // first user-defined section

[ROOT]
filel.EXE
file2.DLL

[filel.EXE]
<PRG files for the EXE file>

[file2.DLL]
DEBUG = NO // section-wide definition

<PRG files for the DLL file>

The first user-defined section lists all executable files (targets) which are to be created by the
ProjectBuilder. For each target, a user-defined section which has the same name exists. It lists
the PRG files (sources) for that target. Sources are normally PRG files only, but can be ARC
files as well if needed by a GUI application. ARC files are compiled with the resource
compiler ARC.EXE and linked to the executable file.

When a target file is to be created as a dynamic library (DLL file), the corresponding file
name must include the DLL extension. The ProjectBuilder automatically creates all necessary
files for creating a DLL. This includes the export definition file (DEF file) and the import
library (LIB file). The latter must be linked to an EXE that uses functions contained in a
DLL.

Alaska Xbase' * Basic Users Guide 77

Options for PBUILD.EXE

When a project file contains multiple user-defined sections, it is sufficient to write only the
source files to each section (PRG files and ARC files, if necessary). The project file can then
be expanded to describe all dependecies between sources and targets by invoking
PBUILD.EXE with the /g switch.

8.5. Options for PBUILD.EXE

The ProjectBuilder is started from the command line by entering PBUILD. If no project file
is specified, the ProjectBuilder searches for the file PROJECT.XPJ and creates the project
described in that file. The general syntax for the call is:

PBUILD @<file>
or

PBUILD [<XPJ file>] [<options>]

@<file> The character @ indicates a file which lists all sources which are part
of a project. <file> is an ASCII file that contains the name of one
source file in each line. It can be created very easily by entering DIR
/b * PRG > PROJECT.LST on the command line, for example. From
this file, the ProjectBuilder creates a project file with the same file
name but a different file extension (XPJ). The name <file> is also
used for the executable file to be created.

<XP] file> When a project is not described in the file PROJECT.XPJ, the name
of the project file must be specified on the command line. The default
extension is XPJ.

/?or/h Display information about options of PBUILD.EXE. The /? switch only
provides information and cannot be combined with other switches.

/a The switch /a causes the ProjectBuilder to perform a complete
compile and link cycle for all sources of a project. This rebuilds an
entire project regardless of whether or not source files have been
changed since the last update of the project.

ld<id>[=<val>] The definition <id> in a project file can be set to the value <val>
using the /d switch on the command line. For example, entering
PBUILD /dDEBUG=NO builds a project without debug information
even if DEBUG=YES is specified in the [PROJECT] section. The
switch /d, therefore, temporarily changes definitions without changing
the project file.

78

Alaska Xbase * Basic Users Guide

Options for PBUILD.EXE

/g[<name>] Specifying the switch /g causes the ProjectBuilder to analyze a project
for dependencies. It then generates a list of all files the target file
depends on. This option must be used to expand the basic structure of
a project file or when dependencies are changed. The basic structure
of an XP]J file covers only PRG files and targets (EXE or DLL). A
complete XPJ file, however, lists files with the extension CH, OBJ,
ARC, DEF and LIB (DEF and LIB files are used for creating
DLL files).

Optionally, a new project file can be created by specifying <name>.
If the file name is omitted, an existing project file is overwritten.

n When DLL files are part of a project, the ProjectBuilder
automatically creates corresponding DEF files (Export definition
files) and LIB files (import libraries). Normally this is not necessary
when a PRG file is changed but only when the number, sequence or
identifiers of exported functions change in the DLL. For example, if a
function in a PRG file is changed by inserting a few lines of code, the
PRG file must be compiled and the DLL must be linked. However,
the export definitions and the import library do not need to be rebuild
in this case. Therefore, the /1 switch suppresses automatic creation of
DEF and LIB files.

/n With /n, the ProjectBuilder only displays all necessary steps to update
a project without performing the corresponding actions (compiler and
linker are not invoked).

v The switch /v activates the verbose mode of the ProjectBuilder.

Alaska Xbase* * Basic Users Guide 79

The Alaska Linker - ALINK.EXE

9. The Alaska Linker - ALINK.EXE

The linker ALINK creates a single file containing executable 32 bit code from OBJ and LIB
(libraries) files. OBJ files are the program modules of an application created by the compiler
and LIB files contain collections of several OBJ files. The output file of the linker can be
either an EXE or a DLL file. All files to be linked by ALINK must comply with the Common
Object File Format (COFF).

Note: If an application is created by the ProjectBuilder PBUILD.EXE it is not necessary to
start the linker explicitly. The ProjectBuilder invokes the linker automatically.

9.1. Calling the linker from the command line

ALINK can be started from the command line and all files to be linked must be specified on
the command line. Alternatively a link script which controls the link process can be used. The
general syntax for the call is:

ALINK [<options>] <OBJ> [<LIB>] [<RES>] [/OUT:<EXE>]

or

ALINK @<LinkScriptl> [@<LinkScriptN>]

When ALINK is called, one or more OBJ files must be specified as input files. The linker
creates an EXE file as an executable program from the OBJ files. By default, the name of the
first OBJ file is used as the name for the resulting EXE file. Input file names are separated by
blank spaces and may appear in any order on the command line. ALINK uses .OBJ as default
file extension. This means that OBJ files can be specified without extension to the linker.
ALINK uses extensions only for searching files. It does not make any assumptions about file
contents from file extensions.

In addition to OBJ files, ALINK accepts LIB files and one RES file as input files. LIB files
are used for creating DLL files (see Creating DLL files) while a RES file contains binary
resources, such as bitmaps or icons, which must be available at runtime (see The Alaska
Resource Compiler - ARC.EXE).

Input files for the linker can also be listed in an ASCII file <LinkScript> which must be
specified with a preceeding @ sign on the command line. The linker reads this file and links
all files listed therein to an executable output file. The linker rounds the value <n>to a
multiple of 64kB.

80

Alaska Xbase* * Basic Users Guide

Linker options

9.2. Linker options

The linker options pass information to ALINK specifying how an excutable file is created. It
uses keywords which are always preceded by a slash. Linker options can be specified at any
place on the command line, and some of the key words can be abbreviated.

/BASE:<n>

With the option /BASE:<n>, the linker sets the specified base address for
loading the executable file. Default values are 0x400000 for EXE files and
0x10000000 for DLL files. If the operating system is not able to load a file at
the specified location, it calculates a new base address and relocates the
program. Information about base addresses can be obtained by using the
/MAP option. Base addresses are then listed in a MAP file.

/DE[BUG]

With option /DEBUG, the linker imports debug information, such as symbol
names and line numbers, into the EXE file. The EXE file can still be executed
outside of the debugger. Within the debugger, this information is available
only when the application has been linked with the /DEBUG option.

Important: To receive debug information from the compiler, PRG files must
be compiled with the /b switch. A debug-enabled EXE file can be created
only by using the compiler option /b along with the linker option /DEBUG.

/DEFAULTLIB:<file>

This option specifies an additional LIB file in which the linker is to search for
resolving external references. The linker first searches the libraries specified
on the command line, then the /DEFAULTLIB libraries and finally those
named in OBJ files.

/DLL

With this option, the linker creates a DLL file instead of an EXE file. All OBJ
files to be linked to a DLL must be compiled using the /dll switch of the
compiler.

Note: When using the option /DLL, not only OBJ files but also the export
definition file (EXP file) must be specified to the linker (see Creating DLL
files).

Alaska Xbase* * Basic Users Guide 81

Linker options

/MAP[:<file>]

The /MAP option causes the linker to create a MAP file. This file contains
information about the executable file. Optionally, the MAP file name can be
specified with <file>. If it is omitted, the output file name is used for the
MAP file.

/NOD[EFAULTLIB]

/NOL[OGO]

/OUT:<file>

This option prevents ALINK from searching default import libraries which
resolve external references, such as the file XPPRT1.LIB, for example. When
this option is used, the linker only uses the LIB files specified on the
command line.

This option suppresses the display of the program logo and version number.

The name of the executable file can be defined with this option. By default,
the file name is created from the first OBJ file specified to the linker.

/PM[TYPE]:VIOIPM [<major>[.<minor>]]

/SUBSYSTEM:CONSOLEIWINDOWS [<major>[.<minor>]]

The /SUBSYSTEM and /PMTYPE options have the same meaning for the
linker. They define the application type. The default is VIO or CONSOLE,
respectively, which indicates a text mode application. If PM or WINDOWS is
specified, the linker creates a GUI application.

Optionally, the minimum version number of the operating system required for
an Xbase** application to be executed can be specified. If <major> is set to 4
and <minor> to .1, for example, an Xbase* program could not be started on
an operating system version 3.x but it would run on a 5.x version.

IST[ACK]:<max>[,<min>]

This option sets the stack size of an Xbase** application. <max> is a numeric
value indicating the maximum stack size in bytes (default is 1 MB), while
<min> optionally defines the stack size at program start. This means that the
minimum stack size is <min> bytes and it can grow dynamically at runtime to
a maximum size of <max> bytes.

82

Alaska Xbase Basic Users Guide

Environment variables for the linker

/VERBOSE

The option /VERBOSE causes the linker to display additional information
during the link process.

9.3. Environment variables for the linker

ALINK.EXE looks for the environment variable "ALINK" and uses its contents as default
options. An example of a definition for the environment variable is:

SET ALINK=/DEBUG /PMTYPE:PM

This creates a debug-enabled GUI application by default. All options specified on the
command line are processed after the SET ALINK= options. Therefore, command line
options override those set with the environment variable.

In addition, the linker uses SET LIB= as a search path for OBJ and LIB files. ALINK
searches for OBJ and LIB files in the following order:

1. The directory specified as part of a file name.
2. The current directory.
3. All directories defined in the environment variable SET LIB=.

If an OBJ or LIB file is not found, ALINK issues an error message and terminates the link process.

9.4. Creating DLL files

Dynamic linked libraries (DLL files) form the basis of the operating system and should
generally be considered as part of an application during program development under Xbase**.
This chapter discusses how to build DLL files and uses as an example the following three
procedures, each of which is assumed to be programmed in a separate PRG file:

** File MAIN.PRG ** // This file is used to
PROCEDURE Main // create an EXE file.
SayHello() // Procedures are contained
SayHi () // in a DLL file.
RETURN
** File SAYHELLO.PRG ** // These two files are used
PROCEDURE SayHello // to create a DLL file.
? "Hello world"
RETURN

Alaska Xbase' * Basic Users Guide 83

Creating DLL files

** File SAYHI.PRG **
PROCEDURE SayHi
? "Hi folks"
RETURN

The Xbase** ProjectBuilder provides the easiest way for creation of a DLL file since it can
perform all necessary steps automatically. It is only required to create a project file which
contains separate sections for EXE and DLL files. An appropriate project template for the
ProjectBuilder can look like this:

// File: PROJECT.XPJ
[PROJECT]
ROOT

[ROOT]
MAIN.EXE
MYFUNCS.DLL

[MAIN.EXE]
MAIN.PRG
MYFUNCS.LIB

[MYFUNCS.DLL]
SAYHELLO. PRG
SAYHI.PRG

The entire project consists of one EXE and one DLL file. The template lists the coresponding
PRG source files in two separate sections. The section for the EXE file includes the import
library MYFUNCS.LIB which is necessary for using DLL functions. This template must be
expanded by calling PBUILD with the /g option and a second call - without the /g option -
finally creates both EXE and DLL with its import library file.

If a DLL file is to be created without the ProjectBuilder, using a Make utility, for example, a
total of five different steps must be performed:

1. Compile all PRG files required for the DLL file with the /dll compiler switch.

2. Create a file with the definitions for the modules in the DLL file (DEEF file). This file
contains a list of all functions or procedures which are exported from the DLL file and
can be imported to an EXE file. This task is accomplished by the utility progam
XPPFILT.EXE.

3. Create an import library (LIB) and an export file (EXP) from the DEF file. This is
done by the utility program AIMPLIB.EXE.

4. Link OBJ files with the EXP file to a DLL.

84

Alaska Xbase - * Basic Users Guide

Environment variables for the linker

5. To be able to use the new DLL file with a newly created EXE file, the import library
(LIB) must be linked to the EXE file.

The following example describes these five steps. It uses the three PRG files MAIN.PRG,
SAYHELLO.PRG and SAYHI.PRG:

Step 1: Compiling

Files for an EXE file or a DLL file must be compiled differently:
XPP main /qa /b

XPP sayhello /g /b /dll

XPP sayhi /q /b /dll

Three OB files are created. The MAIN.OBIJ file can only be linked to an EXE file and the
files SAYHELLO.OBJ and SAYHI.OBJ can only be linked to a DLL file.

Step 2: Create the DEF file

To use a DLL file, all functions or procedures which can be called from outside the DLL
must be known (export definitions). Definitions for exported functions or procedures are
listed in a DEF file which is created by the utility program XPPFILT.EXE. It generates a
DEF file from a list of OBJ files which are to be linked to a DLL:

xppfilt sayhello.obj sayhi.obj /f:myfuncs.def

XPPFILT.EXE creates the file MYFUNCS.DEF which contains all information for creating
the file MYFUNCS.DLL. The example DEF file looks as follows:

01: LIBRARY myfuncs INITINSTANCE TERMINSTANCE
02: DATA MULTIPLE NONSHARED READWRITE LOADONCALL

03: CODE LOADONCALL

04:

05: EXPORTS

06:

07: ;From object file: sayhello.obj
08: SAYHELLO

09:

10: ;From object file: sayhi.obj
11: SAYHI

In the DEF file, comment lines start with semicolons. All other lines contain statements for
the linker. The statement LIBRARY declares the file name of the DLL file and indicates
whether the initialization routines in the DLL file are executed only once during loading or
each time a process requires the DLL file. All DLL files created with Xbase** must execute
their initialization routines for each process (each program) and INITINSTANCE (line 1)
must always be specified.

Alaska Xbase* * Basic Users Guide 85

Creating DLL files

When multiple Xbase* programs access the same DLL file, they can only share the program
code and not the variables declared in it. All data in a DLL file must be given the attributes
MULTIPLE NONSHARED READWRITE. This is done using the statement DATA (line 2).

The option LOADONCALL specified in the statements DATA and CODE specify that the
DLL file is loaded into memory only when a module contained in the DLL file is executed.
The alternative is the option PRELOAD, which specifies that loading takes place at the start
of the EXE file (lines 2 and 3).

Following the EXPORTS statement (line 5) all identifiers (names) for exported functions and
procedures must be listed. Each identifier must appear on a line by itself. Only the functions
or procedures specified following the EXPORTS statement can be called from an EXE file.

Note: If classes are declared in a DLL file, only the class names must be listed, not the
method names declared for a class. The class name is also the name of the class function and
this must be defined as exported.

Step 3: Create the import library

The DEF file is used by the utility program AIMPLIB.EXE to create an import library (LIB
file) and an export file (EXP file):

aimplib myfuncs.def

As a result, the files MYFUNCS.LIB and MYFUNCS.EXP are created. The LIB file
contains information about what can be imported by an EXE file and the EXP file defines
what is exported from a DLL file.

Step 4: Create the DLL file

When the EXP file exists, the DLL file can be created by the linker. All OBJ files plus the
EXP file must be specified:

ALINK /DLL sayhello.obj sayhi.obj myfuncs.exp /OUT:myfuncs.dll

OB files must be linked using the /DLL option. The name of the DLL file is defined using
the /OUT option.

Step 5: Create the EXE file
The last step creates the executable EXE file. All import libraries containing references to
additional DLL files must be specified to the linker:

ALINK main.obj myfuncs.lib

This call to ALINK creates the executable file MAIN.EXE as text mode application. It contains
no code from the DLL file, but references the dynamic library MYFUNCS.DLL. The code from
this file is loaded when a function contained in the DLL is called from MAIN.EXE.

86

Alaska Xbase* * Basic Users Guide

The utility program AIMPLIB.EXE

9.5. The utility program AIMPLIB.EXE

The program AIMPLIB.EXE creates import libraries and export files from export definition
files (DEEF files). These files are required for the creation of DLL files to be linked statically
to an EXE (see the previous section). AIMPLIB accepts the following command line options:

21/h Displays information about command line options.

/coff Creates an import library in Common Object File Format (COFF). This
is the default option for Windows platforms.

lomf Creates an import library in Object Module Format (OMF). This is the
default option for the OS/2 platform.

Jo:<file> Specifies the file name <file> for the import library.

/q Suppresses screen output while the program is running (quiet mode).

Alaska Xbase* * Basic Users Guide 87

The Alaska Resource Compiler - ARC.EXE

10. The Alaska Resource Compiler -

ARC.EXE

In GUI applications, it is a common practice to use external resources for displaying graphic
information which cannot be included in PRG source files, such as bitmap images, for
example. One way of supplying external resources to an application is by linking the
resources to the executable file. In this way, it is guaranteed that resources are available for
the program at runtime.

External resources must exist in a binary format for the linker when it binds them to an
executable file. The conversion to binary format is the task of the resource compiler
ARC.EXE which uses a description file for external resources (ARC file) to create a binary
resource file (RES file).

10.1. Declaring external resources - The ARC file

When an Xbase** application requires external resources, they are declared in an ARC file.
This is a file in ASCII format which is compiled to a binary resource file (RES file) by the
resource compiler ARC.EXE. External resources are bitmaps, icons and pointers. In an
application program, they are identified by a numeric ID. Therefore, the ARC file must
provide data about the resource type, a numeric ID for each resource and the name of the file
that contains the resource:

*

* TEST.ARC

*

/* Declaration of different
resource types

*/

BITMAP 110 = "Logo.bmp" // Bitmap
ICON 120 = "Folder.ico" // Icon
POINTER 130 = "Arrow.ptr" // Pointer
* EOF

These lines show the important syntactical elements for declaring resources in an ARC file.
Declaration begins with a keyword indicating the resource type. It is followed by a numeric ID for
identifying the resource within an application. After the ID, an equal sign must appear and the
name of a file enclosed in double quotes completes the declaration. Comments can be included in
the ARC file (as in a PRG file) by using the characters /* and */ or a double slash for inline
comments. In addition, the asterisk indicates a comment line when it is the first character in a line.

88

Alaska Xbase* * Basic Users Guide

Directives for ARC.EXE

10.2. Directives for ARC.EXE

Instead of numeric IDs, #define constants can be used in an ARC file just as in a PRG file.
This has the ovious advantage that resources can be identified in both ARC and PRG files
using the same constants. To accomplish this, the constants are defined in a CH file. The
resource compiler understands the directives #inlude, #define, #ifdef, #ifndef, #else and
#endif, and treats them in the same way as the Xbase** compiler. Therefore, it is possible to
declare resources in the following way:

** CH file: BITMAPID.CH

#define ID_BMP_LOGO

#define ID_BMP_BACKGROUND

#define ID_BMP_NEXT

10
11
12
13

/7
/1
/1l

Include file defines
constants for
XPP.EXE and ARC.EXE

#define ID_BMP_PREVIOUS
** EOF
** ARC file: TEST.ARC

#include "BitmapID.ch"

BITMAP
ID_BMP_LOGO =
ID_BMP_BACKGROUND =

"Logo.bmp"
"Backgrd.bmp"
"Next .bmp"
"Prev.bmp"

100 = "\bitmaps\os2\test.bmp"

100 = "\bitmaps\w32\test.bmp"

ID_BMP_NEXT =
ID_BMP_PREVIOUS =
#ifdef __0S2__
#else
#endif

** EOF

/7

/7

//
/7
1/

/!
//
//

Declaration of resources
Include CH file

Keyword introduces
a block of resources
of the same type

Conditional
compiling due to
implicit constant

This example shows the code for a CH file which defines constants for the numeric resource
IDs. The constants are used in the ARC file since ARC.EXE can resolve the #include

directive.

Only bitmap resources are declared in the example. The keyword BITMAP is written in a
separate line and is followed by a block of resource declarations of the same type. ARC
supports this syntactical form for declaring resources which results in better readability of the
ARC file. If a keyword is written on a line by itself, all following lines declare the same
resource type without repeating the keyword.

Alaska Xbase* * Basic Users Guide

89

Options for ARC.EXE

The last lines in the example demonstrate how operating system-specific resources can be
declared in one and the same ARC file. The directives #ifdef, #else and #endif are used, thus
allowing for a conditional compilation. ARC.EXE uses the same implicit #define constants as
the Xbase* compiler: __OS2__and _ WIN32__.

10.3. Options for ARC.EXE

The resource compiler is started on the command line using the following syntax:
ARC [<options>] <filel> [<fileN>]

ARC.EXE creates one RES file from all ARC files specified on the command line. If the
#include directive appears in an ARC file, the resource compiler searches for the include files
in the current directory and in the directories listed in the INCLUDE environment variable.
The files containing the external resources - like bitmaps or icons - are searched in the current
directory and in the directories listed in the XPPRESOURCE environment variable.

The resource compiler accepts the following command line options:

/?21/h Displays information about ARC options.

ld<id>[=<val>] The /d option specifies the #define constant <id> to the resource
compiler on the command line. The #define constant is valid within the
ARC file. Optionally, the constant can be assigned the value <val>.

/ga When the /ga option is used, all literal character strings in the ARC
file are converted to ANSI before the resource compiler creates the
RES file.

/go When the /go option is used, all literal character strings in the ARC
file are converted to OEM before the resource compiler creates the
RES file.

fi:<path> The /i option specifies an additional search directory <path> for
the resource compiler to use when locating #include files.
Normally, ARC.EXE only searches for these files in the directories
specified by the INCLUDE environment variable.

/o:<name> Normally, the resource compiler creates a RES file which has the
same file name as the ARC file it is created from. The /o switch is
used to rename the resulting RES file to <name>.

/q Suppresses screen output while compiling (quiet mode).

v The switch /v activates the verbose mode of the resource compiler.

90

Alaska Xbase - Basic Users Guide

Basics of Database Programming

11. Basics of Database Programming

This chapter describes the basics of database programming. It explains fundamental aspects
as well as major terms used in the context of databases and database access.

11.1. What is a database

Theoretically, the word "database" refers to the entire set of data belonging to one problem
domain. This data can be divided into many files. In the context of xBase dialects "database"
is used when discussing individual files that exist in the DBF file format. For this historical
reason, the word "database"” is used in this documentation as a synonym for a single DBF file.

The DBF file format is the basis for all xBase dialects and allows management of extensive
data sets in a straightforward manner. The data within each DBF file is organized in table
form. Each column corresponds to a database field (field, for short) and each row
corresponds to a "data record"” (record, for short). The title (or top row) contains the field
names identifying the fields. The following table illustrates how data is organized within a

DBF file:

CUSTNO LASTNAME FIRSTNAME PHONE
40001 King Michael (609)423-4567
40002 Fisher Fred (614)713-4578
50013 Anderson Robert (819)567-9832
50021 Long Barbara (402)715-4321
50043 Baker Christine (517)454-3356
50057 Kemper Joseph (414)234-5678
50100 Smith Richard (303)614-4321

The DBEF file (table) in this example contains seven records (rows). A single record includes
four fields (columns). Each field contains specific information about a customer.

In a DBEF file, the structure of the table is defined along with the data. The table definition
includes the field names (column headings), field lengths (column widths), data types and
number of decimal places for numeric fields. A file contains strongly typed data, meaning the
data in a column always has the same data type. The DBF file format allows a total of five
different data types to be stored: character, date, logical, memo and numeric.

The initial definition of the structure of a DBF table can also be stored in a DBF table. To be
used in this way, the table must contain the field name, data type of the field, field length and
the number of decimal places (a total of four columns).

Alaska Xbase* * Basic Users Guide 91

Creating a database

The definition of the table structure for the above example would be the following:

FIELD_NAME FIELD_TYPE FIELD_LEN FIELD_DEC

CUSTNO C 8 0
LASTNAME C 20 0
FIRSTNAME C 20 0
PHONE C 15 0

This table contains all the information necessary to describe the structure of the DBF file.
Each record contains the definition for one field. The column headings in this table are the
field names of what is called a "structure extended" DBF file. A structure extended DBF file
contains the field definitions for another DBF file. The field definitions comprise the
definition of the structure of a DBF file, and are the starting point for database usage.

11.2. Creating a database

A DBEF file can be created only from a structure definition. In Xbase** the functions and
commands listed in the next table can be used to create this definition:

Functions and commands for the creation of databases

Function Command

DbCreateExtStruct() CREATE

DbCreateFrom() CREATE FROM

DbCopyStruct() COPY STRUCTURE
DbCopyExtStruct() COPY STRUCTURE EXTENDED
DbCreate()

The first four functions and commands in this table exist only for compatibility reasons and
should no longer be used. Creating a DBF file in Xbase** should be done using the function
DbCreate(). DBCreate() takes as a parameter the structure definition for the DBF file in the
form of a two dimensional array. This avoids the round-about mechanism of using a structure
extended file. The following code demonstrates the optimal use of the function DbCreate():

cFileName = "CUST.DBF"

aStructure := { { "CUSTNO" , "c", 8, 01, ;
{ "LASTNAME" , "C", 20, 0 }, ;
{ "FIRSTNAME" , "C", 20, 0}, ;
{ "PHONE" , "c", 15, 0} }

DbCreate(cFileName, aStructure)

92

Alaska Xbase* * Basic Users Guide

Creating a database

The file name as well as the structure for the DBF file are stored in variables passed to the
function DbCreate(). The file structure is defined in a two dimensional array. All fields in this
example have the "character” data type, identified using the letter "C" (character). The length
of the fields are 8, 20, 20 and 15 characters, respectively, and all fields have 0 decimal
places.

A field name may contain a maximum of 10 characters. The same rules apply to field names
that apply to variable names. The first letter must be an alphabetical character or an
underscore and all other characters must be alphanumeric or an underscore.

The data type of a field is defined by a single letter. The letters "C" (character), "D" (date),
"L"(logical), "M" (memo) and "N" (numeric) are recognized.

The maximum length of a field depends on the data type:

Character ("C") Maximum 64 kBytes
Date ("D") Always 8 Bytes
Logical ("L") Always 1 Byte
Memo ("M") Always 10 Bytes
Numeric ("N") Maximum 19 Bytes

A memo field always occupies 10 bytes, but can store an unlimited number of characters.
This is because the contents of memo fields are stored in a separate file called a DBT file.

Numeric fields can store numbers with a maximum length of 19 places. The decimal and the
prefix each take up one byte. The largest number which can be stored is 2232-1 and the
maximum number of decimal places is 15.

Alaska Xbase* * Basic Users Guide 93

Saving data

11.3. Saving data

After a DBF file is created using DbCreate(), it must be opened before data can be stored in it
or read from it. The following table gives an overview of the functions and commands that

can be used for the simple database operations "open”, "close", "create record" and "change
field contents".

Functions and commands for simple database operations

Function Command Description
DbUseArea() USE Opens database
DbAppend() APPEND BLANK Appends new record
FieldPut() REPLACE Changes contents of fields
DbCloseArea() CLOSE Closes database

Whether database operations are programmed using functions or commands is simply a
matter of the personal preference of the programmer. At runtime of a program there is no
difference between a database operation that is programmed as a command and one
programmed as a function. In many cases the command syntax is easier to program with. The
following program code shows operations using command syntax which can be contrasted to
the next example which uses function syntax.

USE Customer // open database
APPEND BLANK // append record
REPLACE CustNo WITH " 50112" , : // enter data in
LastName WITH "Miller" , : // fields of the new
FirstName WITH "Karl" , : // record
Phone WITH "(713)517-6554"
CLOSE Customer // close database

In the example, a new record is added to a database containing customer information. The
same operations appear below using the function syntax:

DbUseArea(, , "Customer") // open database
DbAppend () // append record
FieldPut(1 , " 50112m) // enter data in
FieldbPut(2 , "Miller") // fields of the new
FieldPut(3 , "Karl") // record

FieldPut(4 , "(713)517-6554")

DbCloseArea () // close database

In this example, the customer data is written into the database using the function FieldPut()
which identifies the ficld by its ordinal position. In doing this, the program code loses clarity.
A better solution, in this case, is to address the fields by the alias name FIELD and perform
direct assignments:

94

Alaska Xbase - - Basic Users Guide

Saving data

DbUseArea(, , "Customer") // open database
DbAppend () // append record
FIELD->CustNo := " 50112" // enter data in
FIELD->LastName := "Miller" // fields of the new
FIELD->FirstName := "Karl" // record
FIELD->Phone := "(713)517-6554"

DbCloseArea() // close database

Along with these elementary database operations, Xbase** provides many functions that can
be used to obtain information about the database or individual fields. A database must be
open in order for the functions in the next table to be used:

Functions that return information about a database

Function Description

Header() Returns length of the file header in bytes
RecSize() Returns length of a record in bytes
RecCount() Returns number of records in the file
LastRec() Returns number of records in the file
LUpdate() Returns date of the last write access

These functions can be used to calculate the file size of a database (the functions RecCount()
and LastRec() both provide the same value). The formula for calculating the size of a

database is:

(RecSize() * LastRec()) + Header() + 1

This formula is frequently used, along with the function DiskSpace(), during backup routines
to determine whether a DBF file fits on the target drive where it is to be copied.

Information about fields are very important in database programming. Not only are the
contents of a field used when processing data, but the data type, ordinal position within the
DBEF file and the name of a field can also be used. For example, this information becomes
useful when writing generic, or data-driven read/write routines.

Functions returning information about fields in a database

Function Description

FCount() Returns number of fields in the file

FieldName() Returns field name based on ordinal position
FieldPos() Returns ordinal position of field based on field name
FieldGet() Returns contents of field based on ordinal position
Type() Returns data type of field based on field name
DbStruct() Returns file structure as a two dimensional array

Alaska Xbase* * Basic Users Guide

Work area and Alias

The following code presents an example using some of the functions from this table. This
code includes two user-defined functions. One of these reads all fields of a record into an
array and the other writes the array back into the file. This a common programming technique
for buffered editing of records and is frequently used in programs designed for multi-user
operation in a network environment:

PROCEDURE Main
LOCAL aRecord := ReadRecord() // read record

// <edit data>

IF RLock() // lock record
WriteRecord(aRecord) // write record
DbUnlock () // release record
ENDIF
RETURN
FUNCTION ReadRecord() // read record
RETURN AEval(Array(FCount()), {Ix,i| x:= FieldGet(i) },,, .T.)
FUNCTION WriteRecord(aRecord) // write record

RETURN AEval(aRecord, {Ix,i| FieldPut (i, x) })

11.4. Work area and Alias

In database programming it, is the rule, rather than the exception, that an application program
uses multiple databases (DBF files) at the same time. Access to different databases is
accomplished by means of work areas at runtime of a program. A work area is identified by a
numeric index and has two different states, free and used. When a database is opened in a
work area with the USE command, the work area is used. Only one database can be open in a
work area and access to a database can occur only in the selected -or current- work area. In
database programming, work areas play a central role since they encapsulate access to
databases.

When a database is opened, a work area gets a symbolic identifier: the alias name. If not
specified explicitly, the alias name is implicitly created from a database's file name. Thus, a
work area has three important attributes and there are three functions to return this
information.

96 Alaska Xbase* * Basic Users Guide

Work area and Alias

Functions for work areas

Function Description

Select() Returns the number of a work area
Used() Determines whether a work area is used
Alias() Returns the alias name of a work area

Information from different work areas can be retrieved using the alias operator (->) and the
number of a work area, or its alias name. Also, fields of multiple databases are accessed via
alias reference. Referencing work areas with aliases is a fundamental operation and
frequently used in programming with multiple databases, or work areas, respectively. The
following lines of code show some basic operations:

PROCEDURE Main

? Select() // result: 1

? Used() // result: .F.

? Alias() // result: "" (null string)
USE Customer // Open database without alias
USE Invoice ALIAS Inv NEW // Open databases in new work
USE Orders ALIAS Ord NEW // areas with alias names

? Select() // result: 3

? Used() // result: .T.

? Alias() // result: Ord

// result: Customer
// result: Inv

? (1)->(Alias()

)
? (2)->(alias())

? Customer->Lastname // result: Miller
? (2)->InvDate // result: 06.12.1994
? Ord->(Select()) // result: 3

RETURN

This program demonstrates the most important aspects for using multiple databases. At the
beginning of the Main procedure, work area number 1 is selected; it is the current work area.
Since no database is initially open, the function Used() returns the value .F. (false) and the
alias name of the first work area is a null string (""). Only after a database is opened with the
USE command does the work area receive an alias name. The return value .T. (true) of the
Used() function then indicates the current work area to be used. When the USE command is
programmed with the NEW option, it first selects a new work area and then opens a database.
Therefore, the return value of the Select() function is now 3 and no longer 1 as in the first
call. Three databases are open and the third work area is current. Its alias name is "Ord".

When a function is called without alias reference, it is executed in the current work area. An
alias reference causes a function to be executed in the corresponding work area (more

Alaska Xbase* * Basic Users Guide 97

Work area and Alias

precisely, the corresponding work area temporarily becomes the current one, then the
function is executed and the previous work area is selected again). The function call
(1)->(Alias()) returns the alias name of the first work area. It is the string "Customer" which
is implicitly created from the file name.

The example also shows syntax differences which are required for alias references to
database fields (or symbols) and function calls (or expressions). If an expression appears on
the right side of the alias operator, it must be written in parentheses. A symbol is programmed
without parentheses. On the left side of the alias operator, parentheses must be used when a
number or a variable is used instead of the literal alias names. Therefore, alias references can
be coded in different ways:

cAlias := "Customer"

nArea := 1

xValue := Customer->Lastname // Alias reference to field variable
xValue := (1)->Lastname

xValue := (cAlias)->Lastname

xValue := (nArea)->Lastname

xValue := Customer->(Select()) // Execute an expression in

xValue := (1l)->(Select()) // a work area

xValue := (cAlias)->(Select())

xValue := (nArea)->(Select())

Alias names of work areas are guaranteed to be unique, just as work area numbers are. If the
same database file is opened multiple times in different work areas, each work area will
receive a different alias name but reference the same physical database.

USE Customer NEW
USE Customer NEW
USE Customer ALIAS Cust NEW
USE Customer ALIAS Cust NEW

? (1)->(Alias()) // result: Customer

? (2)->(Alias()) // result: Customer_2
? (3)->(Alias()) // result: Cust

? (4)->(Alias()) // result: Cust_4

When an attempt is made to use the same alias name more than once, Xbase* implicitly
creates an unique identifier by adding an underscore and the work area number to the original
alias name.

98

Alaska Xbase* * Basic Users Guide

The work space of Xbase ' *

11.5. The work space of Xbase**

The concept of work areas exists in every xBase dialect. It is extended in Xbase** by a work
space which provides a higher level of abstraction for work areas. The concept of work
spaces can be described as follows:

1. A work space contains work areas.

2. The number of work areas inside a work space is limited to 65.000.

3. A work space defines the current work area. All database operations programmed
without alias reference are executed in this work area.

4. Selecting the current work area is a work space operation. Each work space always has
one current work area.

5. Each thread has at least one work space.

A work space is a container for work areas and allows multiple databases at runtime to be
opened. Access to database fields in a program follows a hierarchical pattern described

below:
Work space One work space in each thread
|
+- Work area A maximum of 65.000 work areas per work space
I
+- Alias name References an open database

|
+- Field name References a database field (field variable)

A work space and contained work areas always exist at runtime of a program, regardless of
whether databases are open or not. The fundamental operation in a work space is selection of
the current work area. As long as a work area is not used, it can be selected by its number. A
number between 1 and 65.000 is passed to the command SELECT or function DbSelectArea()
in order to select a particular work area as the current one. As an alternative, the value 0
(zero) can be specified. This causes the next free work area with the smallest number to
become current. For example:

PROCEDURE Main
USE Customer

? Select() // result: 1
SELECT 100
? Select () // result: 100

Alaska Xbase* * Basic Users Guide 99

The work space of Xbase* -

SELECT 0
? Select() // result: 2
RETURN

At program start, work area 1 is selected and the database CUSTOMER.DBF is opened in
the example with the USE command in the first work area. Then, the work area 100 is
selected and becomes the current one. Finally, the SELECT 0 command selects the next free
work area. It has the ordinal position 2.

When a database is opened in a work area. it can be selected not only by its number but by
the alias name. The alias name is a symbolic name that makes programming with multiple
databases much easier:

PROCEDURE Main
USE Customer
USE Invoice NEW
USE Parts NEW

? Select() // result: 3

? Alias() // result: Parts
SELECT 2

? Alias() // result: Invoice

SELECT Customer

? Select () // result: 1
DbCloseAll () // Close all databases
RETURN

Three databases are opened in this example in three different work areas. It demonstrates
how to select a database using a number or an alias name. At the end, all databases are
closed.

Operations in one work space

The function call DbCloseAll() is an example for functions that perform operations in a work
space. It affects all used work areas, not the free ones. There is a set of functions in Xbase**
that operates on a single work space and performs operations with a single work area or all
used work areas.

100

Alaska Xbase* * Basic Users Guide

The work space of Xbase*

The following table lists these functions:

Functions and commands for one work space

Function Command Description

Affects one work area
DbSelectArea() SELECT Selects the current work area

Affects all used work areas

DbCloseAll() CLOSE ALL Closes database files
DbCommitAll() COMMIT Writes buffers permanently to disk
DbUnlockAll() UNLOCK Releases record and file locks
WorkspaceEval() Evaluates a code block in all

used work areas
WorkspaceList() Returns alias names of all used

work areas in an array

The WorkspaceEval() function listed in the table is the most powerful one, since it evaluates
a code block in all used work areas. All Db...All() functions could be emulated with this
function and new functions for all work areas can be programmed.

Operations between two work spaces

In Xbase**, a work space is bound to a thread. As a consequence, work areas are also thread
local resources, because they are contained in a work space. This implies in turn that database
access is limited to the thread where a database is opened. However, a multi-threaded
program must be able to access databases from different threads. This can be achieved either
by opening the same database in different threads or by exchanging the reference to an open
database between threads or work spaces, respectively. The functions listed in the next table

serve the latter purpose:

Functions for multiple work spaces

Function Description
DbRelease() Transfers the alias of a work area
into the Zero space
DbRequest() Transfers an alias from the Zero space

into a work area

In Xbase**, an alias name is the reference to an open database. The alias name of a work area
can be exchanged between two work spaces. Transferring alias names involves a virtual work
space, which is called the Zero space.

Alaska Xbase* * Basic Users Guide 101

Record pointer and database fields

The two functions DbRelease() and DbRequest() are used for exchange:

USE Customer

? Used() // result: .T.
DbRelease ()
? Used() // result: .F.
DbRequest ()
? Used() // result: .T.

CLOSE Customer

After calling DbRelease(), the current work area is free. However, the database file is still
open. It is the reference to the database (the alias name) that no longer exists in the current
work space. It is transferred to the Zero space, and can be transferred back to a work area of a
work space by calling the DbRequest() function. When DbRequest() is finished, a work area
has received an alias name and is used again. It is important to understand that the database
file remains open during these operations. Only the reference to the open file changes its
place from the current work space to the Zero space back to the same or to another work
space.

11.6. Record pointer and database fields

When a work area is used, all data that is stored in a database file can be accessed. After a
database is opened, the record pointer initially points to the first record. At runtime, the field
variables of a program then contain the values that are stored in the first record. This means
that a program can only access fields of the current record. In order to access data stored in
different records, the record pointer must be moved. Database navigation must occur in a
work area:

USE Customer

? Recno() // result: 1

? Customer->Lastname // result: Miller
GOTO 10 // select record #10
? Recno () // result: 10

? Customer->Lastname // result: Brown

This example demonstrates that the contents of field variables change when the record
pointer is moved. Records are selected by navigating the record pointer and this is the only
way to access all data stored in a database file. The next table lists important functions used
in the context of database navigation:

102

Alaska Xbase " * Basic Users Guide

Record pointer and database fields

Functions and commands for database navigation

Function Command Description

Bof() Beginning of file is reached?

Eof() End of file is reached?

DbSkip() SKIP Moves the record pointer

DbGoTo() GOTO Moves the record pointer to a
particular database record

DbGoTop() GO TOP Moves the record pointer to the
first database record

DbGoBottom() GO BOTTOM Moves the record pointer to the
last database record

DbGoPosition() Moves the record pointer on a
percent basis

DbPosition() Returns record pointer position as a
percent value

RecNo() Returns the record pointer

The functions Recno() and DbSkip() are by far the most important functions for database
navigation. The former returns the record pointer and the latter changes it. Also, the two
functions Bof{) and Eof{) are used very often. They indicate whether the record pointer has
reached the boundaries (top or bottom) of a database file. The following code example shows
a typical construction used to get information from all records of a database file:

USE Customer // Open database
DO WHILE .NOT. Eof() // Exit loop at end of file

// Display single fields
? Recno(), FIELD->Firstname, FIELD->Lastname

DbSkip (1) // Next record
ENDDO
CLOSE Customer // Close database

Alaska Xbase* * Basic Users Guide 103

The Xbase* - DatabaseEngine

12. The Xbase*+ DatabaseEngine

This chapter describes the concepts of the Xbase** DatabaseEngine and many aspects of its
use. Contrary to other Xbase development environments, there is not a single monolithic
database driver in Xbase** (even one that is replaceable such as a Replaceable Database
Driver, or "RDD"). Instead, Xbase** uses the concept of a "database engine” ("DBE"), which
consists of individual components. These components are objects which make services
(methods) available for data and file management. The individual components can be
assembled into a compound DBE. With this modular concept the programmer has the
flexibility to access the various database models available today, as well as any model in the
future.

12.1. Basics of DatabaseEngines

The architecture of the Xbase** DatabaseEngines (DBE) is designed to be applicable to any
database model. This includes both record oriented databases (for example, xBase databases)
as well as set oriented and relational databases (for example, SQL databases). A database can
be described abstractly as having four components:

DATA component This component describes the database model or how
the data itself is stored. "Database” here can be
considered analogous to a "table" in the relational
model or a "structure” in the hierarichal database
model.

ORDER component This component makes a mechanism available to
allow the definition of logical sort orders based on
expressions. This allows leaving the pre-existing
physical order of the tables intact.

RELATION component This component defines the relationships between
data. It links tables either physically or logically
based on expressions. The task of this component can
be considered analogous to the "JOIN operator” in
the relational model or the "Set-pointer” in the
file-based network database model.

DICTIONARY component This component describes the database structure
and/or integrity rules.

104

Alaska Xbase* - Basic Users Guide

Basics of DatabaseEngines

A DatabaseEngine represents one or more of these four components and defines how they
interact with the underlying database. The DBE itself is contained in a DLL file and is loaded
at runtime of a program. For example, the file DBFDBE.DLL contains the DBE which
provides the component for managing DBF files (DATA component). The file
NTXDBE.DLL contains a DBE which represents a component for orders (ORDER
component) that is valid for record oriented databases (for example, DBF files). This DBE
manages index files in the NTX format. The DBFDBE and the NTXDBE are
DatabaseEngines which each contain only one component for data and file management.
They are each designated as a "component DBE".

Two component DBEs which provide different components can be assembled into one new
DatabaseEngine which then controls both components and combines all the characteristics of
the component DBEs within the new DBE. Such an assembled DatabaseEngine is called a
"compound DBE". A compound DBE exists only in memory and is not saved in a file on the
hard disk. Component DBEs, on the other hand, are stored in files.

Compound DBEs are generally needed when programming with databases and must be
created at the start of the program. The appropriate component DBEs are loaded into memory
using the function DbeLoad() and the compound DBE is created using the function
DbeBuild(). The following program example shows the basic approach:

IF .NOT. DbeLoad("DBFDBE", .T.) // load component DBE
Alert("DatabaseEngine DBFDBE not loaded", {"OK"})

ENDIF

IF .NOT. DbeLoad("NTXDBE", .T.) // load component DBE
Alert("DatabaseEngine NTXDBE not loaded", {"OK"})

ENDIF

// create compound DBE
IF .NOT. DbeBuild("DBFNTX", "DBFDBE", "NTXDBE")
Alert ("DBFNTX DatabaseEngine not created", {"OK"})
ENDIF

In the example, two component DBEs stored in the files DBFDBE.DLL and NTXDBE.DLL
are loaded into memory. From these two component DBEs a compound DBE is created with
the name "DBFNTX". This compound DBE can manage DBF files (DATA component) as
well as NTX files (ORDER component).

The example uses only two of the four basic functions available for programming using
DatabaseEngines.

Alaska Xbase ' + Basic Users Guide 105

The Xbase - DatabaseEngine

The next table lists all four functions:

Functions for the preparation of DatabaseEngines

Function Description

DbeLoad() Loads component DBE into memory

DbeBuild() Creates compound DBE and defines it as current DBE
DbeSetDefault() Defines default DBE for file operations

DbeUnLoad() Removes DBE from memory

The function DbeLoad() loads a component DBE into main memory. Such a DBE can be
loaded in two ways: hidden and visible. A component DBE which is loaded as "hidden" can
only be used for creating compound DBEs and not directly used for data and file
management.

DbeLoad("DBFDBE", .F.) // load component DBE as visible
USE Customer // open DBF file
Browse () // perform file operations

In this example, the component DBE is loaded as visible (.F. means not "hidden" here).
Therefore the DBE can be used to open a DBF file, and execute file operations. The
following example shows the opposite:

DbeLoad("DBFDBE", .T.) // load component DBE as hidden
USE Customer // runtime error

Here the component DBE is loaded as "hidden" and any attempt to use it for file management
leads to a runtime error. The DBE can only be used to create a compound DBE using the
function DbeBuild().

Note: The compound DBE "DBFNTX" is created by default each time an Xbase** program
is started. This means that all file and index commands and functions work with this
DatabaseEngine by default. The DBFNTX DBE is created in the file DBESYS.PRG. The
function DbeSys() contained in this file is called each time an Xbase** program starts.

The DBFNTX DatabaseEngine consists of only two components and is able to mimic the
database model of Clipper in how it handles DBF files and NTX files. The RELATION
component is unique in this database model in that no DBE is required for the RELATION
component. Also there is no DICTIONARY component, because this is not supported by the
database model.

106

Alaska Xbase* * Basic Users Guide

DatabaseEngines and programming language

12.2. DatabaseEngines and
programming language

For a complete understanding of DatabaseEngines, an explanation of the internal mechanisms
which create the relationship between the programming language and the database model is
required. As an example, the command USE and the function DbUseArea() open one or more
files in a work area. The actual file opening is performed by a DatabaseEngine, in this case
by the DATA component of the DBE. The command INDEX ON creates an index for a file
open in the work area. This operation is also performed by a DBE, but the DBE uses the
ORDER component.

Certain commands and functions exist within the confines of the programming language and
can only be executed by a specific component of a DatabaseEngine. With these commands
and functions, the request must be routed to the proper DBE capable of executing the
command or function. This task is performed by an internal mechanism called the "Database
Management Language Broker", abbreviated as DMLB. The DMLB routes requests from the
program to a specific component of a DBE.

The DatabaseEngine DBFDBE, for example, is not capable of creating an index. To
accomplish this, the DatabaseEngine NTXDBE must be loaded. Likewise, this DBE can not
open a DBF file. In order for the command USE and the command INDEX ON to be
executed, 2 compound DBE must be available that contains all components required by the
program. The task of the DMLB is to direct requests from the program to the components of
a compound DBE that are able to perform the required task. If no corresponding component
is available, the DMLB attempts to perform the task itself based on its own abilities. If this is
not successful, a runtime error occurs. This model provides the ability to exclude components
that are not needed. For example, it is possible to write a program that does not use an index.
In this case, the DatabaseEngine NTXDBE (more precisely, the ORDER component) does
not need to be loaded.

The distribution of specific functionalities to component DBEs and the ability to make all
functionalities dynamically available using a compound DBE offers much flexibility in data
and file management. For example, an index can be created for a file that exists in SDF
format (System Data Format). The NTXDBE (ORDER component) merely needs to be
combined with the SDF DatabaseEngine (DATA component). The result is an SDFNTX
DatabaseEngine that allows logical sorting of ASCII files that are in SDF format. The
following program code illustrate this (Note: the example assumes that the compound DBE
DBFNTX is already created).

USE Customer VIA DBFNTX // open DBF file
COPY TO Address.txt SDF // copy file into ASCII file
CLOSE Customer // (System Data Format)

Alaska Xbase** Basic Users Guide 107

Determine information about DatabaseEngines

DbeLoad("SDFDBE", .T.) // load SDF engine and
// create compound DBE

DbeBuild("SDFNTX", "SDFDBE", "NTXDBE")

USE Address.txt VIA SDFNTX // open ASCII file

INDEX ON Upper (Name) TO Temp // create index

The fact that DATA components can be combined with ORDER components to create a
compound DBE allows the functionality of various file operations to be available for
different file formats. In the example a TXT file (ASCII file) is opened using the same
command (USE) previously used to open a DBF file. Also database operations, like
DbAppend() and DbSeek(), can now be performed on the TXT file. The addition of a new
data record using DbAppend() is accomplished via the SDF component and the search for
data in the TXT file using DbSeek() occurs via the NTX component.

There is, however, the limitation that it must be possible to perform the particular file
operation with files of the file format. In the case of the SDF DatabaseEngine, deleting data
records using the function DbDelete() is not possible. This function flags a record for
deletion and there is no provision in the SDF file format for deletion flags. Consequently,
calling the function DbDelete() for a file managed by the SDF DatabaseEngine would lead to
a runtime error because this operation is not supported.

12.3. Determine information about

DatabaseEngines

At runtime of a program it is sometimes necessary to determine information about loaded
DBEs, work areas, or individual fields in work areas. Xbase** provides the four functions
listed in the following table for this:

Functions for information about DatabaseEngines

Function Description

DbelList() Determines which DBEs are loaded
Dbelnfo() Returns information about the current DBE
Dblnfo() Returns information about a work area
FieldInfo() Determines information about a field based on

ordinal position

For a deeper understanding of these functions, knowledge of the internal mechanisms used
for opening files with USE or DbUseArea() is required. These mechanisms are not
immediately recognizable at the language level. A file can only be opened when at least one
DBE is loaded that provides the DATA component for the requested file format. Only after
such a component is available can a file be opened in a work area, otherwise a runtime error

108

Alaska Xbase - Basic Users Guide

The function Dbelnfo()

occurs. Whether or not a DBE is currently available can be determined at runtime using the
function DbeList(). DbeList() returns a two column array: the first column contains the names
of DBEs and the second column contains logical values representing the "hidden-flag" (see
previous section).

Opening a file using the current DBE creates an instance of the DBE which is called a
"database object" (DBO). The DBO makes use of all the characteristics of the current DBE
and it is actually the database object that opens and manages files. A DBO represents the
work area where the files are opened.

It is helpful to distinguish between the DatabaseEngine, which provides the functionality that
allows files to be opened in a work area and the database object which exists only while the
file is open in the work area. The database object is created by the DatabaseEngine when the
file is opened. It manages the file and is automatically discarded when the file is closed.

12.3.1. The function Dbelnfo()

The function Dbelnfo() provides information about the current DBE. Therefore, it can only
be executed when a DBE is loaded. It is similar to the functions DbInfo() and FieldInfo() that
can only be called when a file is open in the current work area. Otherwise a runtime error
occurs.

As well as returning information, Dbelnfo() also allows a DBE to be configured in specific
ways. Several settings of a DBE are changeable and can be redefined using Dbelnfo(). As an
example, the default extension for files can be changed:

#include "Dmlb.ch"
#include "DbfDbe.ch"

DbeLoad("DBFDBE", .T.)
DbeLoad("NTXDBE", .T.) // create the compound DBE
DbeBuild("DBFNTX", "DBFDBE", "NTXDBE") // DBFNTX

// default extension DBF->FBD
// for database files
DbeInfo(COMPONENT_DATA , DBE_EXTENSION, "FBD")
// default extension NTX->XTN
// for index files
DbeInfo(COMPONENT_ORDER, DBE_EXTENSION, "XTN")

DbCreate("Temp", { { "LName", "C", 20, O }, ;
{ "FName", "C", 20, 0 }, })

USE Temp // create database and
INDEX ON Field->LName TO TempA // index files

INDEX ON Field->FName TO TempB

CLOSE Temp

// display file names. Result:

Alaska Xbase** Basic Users Guide 109

The function Dbelnfo()

AEval(Directory("Temp*.*"), ; // Temp . FBD
{lal QOut(alll) }) // TempA.XTN
/7 TempB. XTN

In this example, the default extensions for two different kinds of files are redefined using
Dbelnfo(). This affects the files managed by the DATA component of the DBFNTX DBE
(the DBF file is created as a FBD file) and the files which are managed by the ORDER
component (the NTX files are created as XTN files). All this happens in just two lines of the
example:

DbeInfo(COMPONENT_DATA , DBE_EXTENSION, "FBD")

DbeInfo(COMPONENT_ORDER, DBE_EXTENSION, "XTN")

A special aspect of Dbelnfo() is shown: if the function is called with parameters, the first
parameter must always be a #define constant from the file DMLB.CH specifying one of the
four components that can be contained in a DBE. Also, the second parameter must be a
#define constant. There some constants that are universally valid and can be used with every
DBE and other constants that may be used only with a specific DBE. The difference can be
recognized by the prefix of the #define constant. The prefix DBE_ identifies universally valid
constants and the prefix DBFDBE _ identifies constants which are only valid for the
DBFDBE (more precisely, for the DATA component which manages DBF files). Constants
containing the prefix DBFDBE_ are defined in the #include file DBFDBE.CH. The third
parameter specifies the value which is to be set for the specific setting (in the example, the
file extension) of a DBE.

Not all settings of a DBE are changeable, so the third parameter is only processed by
Dbelnfo() when the DBE allows the corresponding setting to be changed. The following table
gives an overview of the universally valid settings that exist for all DBEs. The only setting
which can be changed is the file extension:

Universal constants for characteristics of DatabaseEngines

Constant *) Data type Description
DBE_DATATYPES ro C Supported data types
DBE_EXTENSION a C Default file extension
DBE_MANUFACTURER ro C Producer of the DBE
DBE_NAME ro C Name of the DBE
DBE_VERSION ro C Version of the DBE

*) ro=READONLY , a=ASSIGNABLE

Along with these general constants, most DatabaseEngines have specific #define constants
that can only be used for the specific DBE (more precisely, for a specific component). In the
section "Specifications of the DatabaseEngines", DBE specific constants for Dbelnfo() are
described.

110

Alaska Xbase " - Basic Users Guide

The function Dblinfo()

12.3.2. The function DbInfo()

When a file is opened in a work area, a database object (DBO) is created by the current
DatabaseEngine to manage the file open in the work area. The DBO represents the work area
and the function DbInfo() can read information about the DBO and can change settings of the
DBO. Dblnfo() requires that a file be open in the corresponding work area.

Dblnfo(), as well as Dbelnfo(), receives parameters that are constants defined in an #include
file. Universally valid constants can be found in the file DMLB.CH and are listed in the next
table:

Universal constants for database objects (work areas)

Constant *) Data type Description
DBO_ALIAS ro C Alias name
DBO_FILENAME o C Name of the open file
DBO_ORDERS ro N Number of orders (indexes)
DBO_RELATIONS ro C Number of relations
DBO_SHARED ro L .T. if the file is opened

in SHARED mode
DBO_REMOTE ro L .T. if the file is not stored

on the local workstation
DBO_DBENAME ro L Name of the DatabaseEngine that
has opened a database file
*) ro=READONLY , a=ASSIGNABLE

The universally valid #define constants for DbInfo() starts with the prefix DBO_ (for
database object). There are also constants which can be used only with DBOs created by a
specific DatabaseEngine. An example of constants that can be passed to DbInfo() is given in
the following program code:

#include "Dmlb.ch"
#include "DbfDbe.ch"

DbeLoad("DBFDBE", .T.)
DbeLoad("NTXDBE", .T.) // create DBFNTX
DbeBuild("DBFNTX", "DBFDBE", "NTXDBE") // compound DBE

USE Customer ALIAS Cust

? DbInfo(DBO_ALIAS) // result: Cust
? DbInfo(DBO_FILENAME) // result: C:\DATA\Customer.DBF

// file handles
? DbInfo(DBFDBO_DBFHANDLE) // result: 8
? DbInfo(DBFDBO_DBTHANDLE) // result: 9

Alaska Xbase* * Basic Users Guide 111

The function FieldInfo()

The example illustrates that the first parameter passed to DbInfo() is a #define constant which
is either a universally valid constant (prefix DBO_) or a specific DBE constant. In the case of
the DBFDBE, the specific constants for the function DblInfo() start with the prefix
DBFDBO_ and are contained in the #include file DBFDBE. (To summarize: constants which
contain DBE_ are valid for a DatabaseEngine, and for the function Dbelnfo(). Constants
which contain DBO_ are valid for database objects and for the function DbInfo()). The
constants for DbInfo() that are dependent on the current DatabaseEngine are listed in the
section "Specifications of the DatabaseEngines".

A DBO is initialized with all the current settings of the DBE when the file is opened. If
changes are later made to the DBE using Dbelnfo(), all DBOs remain unaffected by the
change. This means that all work areas where files are open are not affected by changes made
to a database engine. Such changes affect only those work areas where a file is opened after
the change is made.

12.3.3. The function FieldInfo()

As soon as a file is opened in a work area, field variables (fields) exist within this work area.
Similar to Clipper, information about a field can be determined using the functions
FieldName() or FieldPos(). Xbase** also includes the function FieldInfo() to read or change
information about an individual field in a work area. The function FieldInfo() behaves in a
manner similar to Dbelnfo() and DbInfo(), and takes a #define constant as the second
parameter. The valid constants for FieldInfo() are listed in the following table:

Universal constants for field variables in a work area

Constant *) Data type Description

FLD_LEN ro N Length of field

FLD_DEC ro N Number of decimal places

FLD_TYPE ro N Data type of field variable on
the Xbase** language level

FLD_NATIVETYPE 1o N Original data type of field

variable as defined in the DBE
*) ro=READONLY , a=ASSIGNABLE

FieldInfo() provides important pieces of information about fields in the database such as the
length and the number of decimal places.

Alaska Xbase* * Basic Users Guide

The function FieldInfo()

Example: (In this example, it is assumed that the DBFDBE is loaded)

#include "Dmlb.ch"

// create database

DbCreate("Part" { { "PartNo" , "¢", 6, 01}, ;
{ "Part" , "c", 20, 01}, ;
{ "Price" . "N", 8, 21})})
USE Part
? FieldInfo(3, FLD_LEN) // result: 8
? FieldInfo(3, FLD_DEC) // result: 2
? FieldInfo(1, FLD_LEN) // result: 6
? FieldInfo(2, FLD_LEN) // result: 20

The first parameter of the function FieldInfo() is the ordinal position of a field (as returned by
FieldPos()) and the second parameter is a #define constant designating what information is
being requested. To determine the length of a field or its decimal places, two simple pseudo
functions can be defined for translation by the preprocessor into calls to FieldInfo():

#xtranslate FieldLen(<nPos>) => FieldInfo(<nPos>, FLD_LEN)
#xtranslate FieldDec(<nPos>) => FieldInfo(<nPos>, FLD_DEC)

The data type of a field is also important information and can be determined by passing the
constant FLD_TYPE or FLD_NATIVETYPE. In both cases FieldInfo() returns a numeric
value identifying the data type. Using the two constants, the data type which is available to be
manipulated by the appropriate Xbase* commands and functions can be distinguished from
the original data type stored in the database. They are often, but not always identical. For
example, at the language level of Xbase** only a single numeric type exists. When numbers
are stored in fields, however, integers and floating point numbers might be treated differently.
Xbase* recognizes the different representations for numbers and other data internally and
distinguishes between data types that can exist on the language level and on the database
level. Correspondingly, FieldInfo() can read the data type of a field as it exists on the
language level (FLD_TYPE) or on the database level (FLD_NATIVETYPE). To determine
the data type of a field on the Xbase** language level, the constant FLD_TYPE is passed to
FieldInfo(). The data type is returned by FieldInfo() as a numeric value, rather than by a
character value such as that returned by Valtype() or Type(). The numeric identification of
data types uses constants defined in the #include file TYPES.CH. The constants from the
following table are available for determining data types using FieldInfo()

Alaska Xbase* * Basic Users Guide 113

Specifications of the DatabaseEngines - file formats

Constants for data types (FieldInfo(FLD_TYPE) return values)

Constant Description
XPP_CHARACTER Character value
XPP_DATE Date value
XPP_LOGICAL Logical value
XPP_MEMO Memo field
XPP_NUMERIC Numeric value
XPP_ARRAY Array *)
XPP_BLOCK Code block *)
XPP_DOUBLE Numeric value as double*)
XPP_ILLEGAL Invalid data type*)
XPP_OBJECT Object *)
XPP_UNDEF Undefined value (NIL)*)

*) Return values with Fieldlnfo() are dependent on the DBE

12.4. Specifications of the DatabaseEngines -

file formats

This section describes the specifications of the DatabaseEngines which are delivered with
Xbase*. It also gives information about database operations that are not supported by each of

the DBEs.

12.4.1. SDFDBE (DATA component)

The SDFDBE manages ASCII files in System Data Format. The default file extension is
".TXT". Each line in the file has the same length and contains one record. Character, date,
logical and numeric data types are supported, but the memo data type does not exist under the
SDFDBE. The specification for a TXT file is as follows:

Specification for the System Data Format (TXT file)

Element Specification

File extension TXT *)

File size Limited only by system resources

File end Chr(26)

Record end Carriage return + line feed = Chr(13)+Chr(10),

Field separation characters

all records have the same number of
characters
None

114

Alaska Xbase- * Basic Users Guide

SDFDBE (DATA component)

Element Specification

Data types C,D, L, N, no memo

Character values Padded with blank spaces on the right
Date values YYYYMMDD

Logical values TorF *)

Numeric values Left filled with zeros

Decimal character Period *)

*) configurable

When a TXT file in SDF format is created, either with COPY TO...SDF, DbExport(), or
DbCreate(), a second file is created containing the structure description for the fields in the
TXT file. By default this file has the extension SDF and is an ASCII file which could also be
created using a simple text editor. The structure definition is supported in the familiar INI file
format that can be written in its generalized form as follows:

[<Section>]
<Keyword>=<Value>

In an SDF file there are two sections: [INFO] and [FIELDS]. The following program
example creates a TXT file in SDF format which illustrates this:

PROCEDURE Main

LOCAL i
DbelL.oad("SDFDBE") // create TXT file
DbCreate("TEST", { {"CHARACTER", "C", 10, 0}, ;

{"DATE" , "D", 8, 0}, ;

{"LOGICAL" , "L", 1, 0},

{"NUMERIC" , "N", 6, 2} Yoo

"SDFDBE")

USE Test VIA SDFDBE // open using SDF engine
FOR i:=1 TO 10 // append 10 records

DbAppend ()

REPLACE FIELD->character WITH Replicate(Chr(64+i), i), ;
FIELD->Date WITH Date()+1i .
FIELD->Logical WITH (i % 2 == 0) .
FIELD->Numeric WITH (1 ~ 2) / 2

NEXT
CLOSE Test // close file
RETURN

Alaska Xbase* * Basic Users Guide 115

Specifications of the DatabaseEngines - file formats

The example creates a TXT file with four fields and appends 10 records to the file. The file
TEST.SDF is created as a structure file along with the data file TEST.TXT holding the data
created in the FOR..NEXT loop. The structure file TEST.SDF looks like this:

[INFO]
file=TEST.TXT
fieldcount=4
recsize=27
reccount=10

[FIELDS]
CHARACTER=C, 10,0
DATE=D, 8,0
LOGICAL=L,1,0
NUMERIC=N, 6,2
[END]

The first section [INFO] describes the file TEST.TXT that contains the data. This includes
the file name without directory (file), the number of fields (fieldcount), the length of a record
(recsize) and the number of records (reccount). The second section [FIELDS] describes the
fields in the file TEST.TXT. Field names appear on the left side of the equals operator and
data type, field length and decimal places are specified as a comma separated list on the right
side. The definition is terminated with the section [END]. Note that both files (SDF and TXT
file) must be located in the same directory.

After the example code above has run, the file TEST.TXT contains ten records with the
following contents:

A 19950822F000.50
BB 19950823T002.00
ccc 19950824F004.50
DDDD 19950825T008.00
EEEEE 19950826F012.50

FFFFFF 19950827T018.00
GGGGGGG 19950828F024.50
HHHHHHHH 19950829T032.00
IIIIIIIIT 19950830F040.50
JJJggggagddle950831T050.00

The SDF DatabaseEngine manages this file and allows database operations to be performed
on the file. This includes defining filter conditions using SET FILTER or DbSetFilter(), as
well as creating relations with DbSetRelation() or SET RELATION. If the SDFDBE is
connected to a compound DBE that contains the NTXDBE (SDFNTX), indexes can also be
created for an ASCII file existing in the SDF format.

The SDF format imposes certain restrictions in programming. For example, it is not possible
to delete records, because there is no provision in the SDF file format for deletion flags. For

116

Alaska Xbase* * Basic Users Guide

SDFDBE (DATA component)

this reason, a call to the function DbDelete() causes a runtime error if the file is managed
using the SDFDBE. Also, the SDFDBE opens the file exclusively which means ASCII files
in the SDF format can not be simultaneously used in the concurrent operation of several
programs. The following table lists all common operations not supported by the SDFDBE:

Database operations that are not supported by the SDFDBE

Function/Command Result of call
DbDelete() Runtime error
DbRecall() Runtime error
DbPack() Runtime error
DbRLock() Runtime error
DbSort() Runtime error
RLock() Runtime error
DbRLockList() Returns an empty array
Deleted() Always returns .F.
FLock() Always returns .T.
Header() Returns zero
USE...READONLY READONLY is ignored
USE...SHARED SHARED is ignored

Configuration of the SDFDBE

The SDF DatabaseEngine can be configured in specific ways using the function Dbelnfo().
The SDF file format and the access mechanism can be affected when the SDF or TXT file are
created. The following table gives an overview of the special #define constants that can be
passed to the function Dbelnfo() when the DatabaseEngine is SDFDBE:

Constants for Dbelnfo() with the SDF-DBE

Constant *¥) Value Datatype Description
SDFDBE_AUTOCREATION a .F. L TXT file is automatically
created by DbCreate()

SDFDBE_DECIMAL_TOKEN a C Character for decimal point

SDFDBE_LOGICAL_TOKEN a TF C Character for logical values

SDFDBE_STRUCTURE_EXT a SDF C Extension for the structure file
*) ro=READONLY , a=ASSIGNABLE

The default values are shown in the column "Value".

Alaska Xbase* * Basic Users Guide 117

Specifications of the DatabaseEngines - file formats

SDFDBE_AUTOCREATION

This constant determines whether only the SDF file or the SDF file and the TXT file are
created by DbCreate(). The default value for this setting is .F. (false) and the function
DbCreate() creates only the SDF file (structure file) and not the TXT file by default. If the
TXT file does not exist when USE or DbUseArea() opens the file, it is created.

If this setting is .T. (true), DbCreate() generates the SDF file as well as an empty TXT file.
Any previously existing TXT file with this name is overwritten.

SDFDBE_DECIMAL_TOKEN

The delimiter for decimal places in numeric values can be set using this value. The default is
the period. The comma is specified as the separator for decimal places in numeric values by
the following code:

DbeInfo(COMPONENT_DATA, SDFDBE_DECIMAL_TOKEN, ",")

When the delimiter is specified as the ASCII character 0 (= Chr(0)) the SDFDBE ignores any
delimiters for numeric fields. It then uses the field specification as found in the structure
extended file (SDF file). Example:
SDF file:

CHAR=C, 4,0

NUMERIC=N, 6, 2
TXT file:

AAAA(004321
BBBB987654

In this case the field NUMERIC would have the value 43.21 for the first record and 9876.54
for the second one.

Note: This special operation mode of the SDFDBE has been introduced to provide for an
easy data conversion between Xbase* and VMS hosts.

SDFDBE_LOGICAL_TOKEN

This setting specifies the two characters used for logical values and specify the values that
represent true and false. The default is "TF". A character string containing two characters is
specified for this setting. The first character represents true and the second character
represents false. The following program code specifies the character "1" for the logical value
true and the character "0" for the logical value false.

DbeInfo(COMPONENT DATA, SDFDBE_LOGICAL_TOKEN, "10")
SDFDBE_STRUCTURE_EXT

This constant determines the file extension for the structure file (SDF file). The default is
.SDF.

118

Alaska Xbase " * Basic Users Guide

DELDBE (DATA Component)

12.4.2. DELDBE (DATA Component)

The DatabaseEngine DELDBE manages ASCII files in delimited format. The default file
extension is TXT. The delimited format is unique in that it allows records and the fields
within records to have variable length. Fields are separated from each other by delimiters
and the default field separator is the comma. Files in delimited format do not use a structure
definition and there is no explicit typing or standardizing of fields.

An implicit typing is done when the fields are read based on the format in which various data
is stored. Data of the character data type is enclosed in delimiting characters (double
quotation marks by default). Numeric values are not enclosed in delimiting characters, and
are recognized as numeric because they start with the digits 0 to 9, or a plus/minus prefix.
Logical values are single alphabetical character which are not enclosed in delimiting
characters. The default values are T and F. If two field separators occur next to each other
without an alphanumeric character between them in a record, this is interpreted as the value
NIL. The DELDBE is the only DBE delivered with Xbase* capable of storing the value NIL.
The data types date and memo are not supported by the DELDBE.

Specifications for the delimited format (TXT file)

Element Specification

File extension TXT *)

File size Limited by system resources

File end Chr(26)

Max. record length Defaults to 128 Kilobyte *)

Record end Carriage return + line feed (Chr(13) + Chr(10))
records can have a variable number of characters

Field separators Comma *)

Data types C,L, N, U, no date, no memo

Character values Enclosed in double quotation marks *)
blank spaces at the end are removed

Logical values T or F, single alphabetical character *)

Numeric values Digits 0 to 9, not zero filled

Decimal character Period *)

NIL Identified by two adjacent field separators

with no characters in between
*) configurable

The DELDBE manages ASCII files whose rows or records have variable lengths. This DBE
is used with the commands COPY TO...DELIMITED and APPEND FROM...DELIMITED.
It also supports basic database operations, like DbCreate(), DbUseArea(), and DbSkip().
Filters and relations can also be set with the DELDBE. Creating an index file is not

Alaska Xbase* * Basic Users Guide 119

DELDBE (DATA Component)

supported, even if the DELDBE is coupled with the NTXDBE. The command DELETE and
the function DbDelete() delete records but have a slightly different meaning. The deletion
does not occur via a deletion flag (as with the DBFDBE), but results in an immediate
physical deletion. After calling DbDelete(), a record can not be recalled when the file is
managed by the DELDBE. The following table gives an overview of the database operations
that are not supported by the DELDBE:

Unsupported database operations of the DELDBE

Function/Command Result of call
DbRecall() Runtime error
DbPack() Runtime error
DbRLock() Runtime error
DbSort() Runtime error
DbSeek() Runtime error

RLock() Runtime error

FLock() Runtime error

INDEX ON Runtime error

SET INDEX Runtime error
DbRLockList() Returns an empty array
Deleted() Always returns .F.
Header() Returns 0
USE...READONLY READONLY is ignored
USE...SHARED SHARED is ignored

Field names and file structure (more precisely, the DbStruct() array) also behave in a special
way under the DELDBE. An ASCII file in the delimited format contains no structure data,
however fields of such a file can be accessed using an alias name. The field names begin with
"FIELD" and are enumerated from 1 to FCount(). The following program code illustrates
this:

USE Customer ALIAS Cust VIA DBFNTX // open DBF file
aStructure := DbStruct()

// create TXT file
DbCreate("Address.txt", aStructure, "DELDBE")
USE Address ALIAS Addr VIA DELDBE

Addr->(DbaAppend()) // append record
REPLACE Addr->FIELD1l WITH Cust->LName, ; // import data from DBF
Addr->FIELD2 WITH Cust->FName, ; // to TXT file

Addr->FIELD3 WITH Cust->Phone

120

Alaska Xbase* * Basic Users Guide

DELDBE (DATA Component)

In this example a TXT file in delimited format is created using the function DbCreate(). The
structure description is taken from a DBF file using the DbStruct() array. When a file is
created using the DELDBE, the structure array passed to DbCreate() only determines the
number of fields, not field names or field types. Since the length of fields is variable in the
delimited format, the structure array can not set field lengths or the number of decimal places
for numeric fields. Also calling DbStruct() for a file managed by the DELDBE provides a
structure array which gives the structure of the current record only. It does not give the record
structure of the file, since the fields can differ in structure from onc record to another.

Configuration of the DELDBE with Dbelnfo()

The DEL DatabaseEngine can be configured in specific ways using the function Dbelnfo().
Specifically, the DEL file format and the operating mode of the DELDBE can be configured
using Dbelnfo(). The following table gives an overview of the special #define constants that
can be passed to the function Dbelnfo() for the DELDBE:

Constants for Dbelnfo() with the DELDBE

Constant *) Value Data type Description
DELDBE_MODE a #define N Operating mode (see below)
DELDBE_RECORD_TOKEN a CRLF C Separation character

for record
DELDBE_FIELD TOKEN a |, C Separation character

for fields
DELDBE_DELIMITER_TOKEN a " C Embedding character

for character values
DELDBE_DECIMAL_TOKEN a . C Character for decimal

point
DELDBE_LOGICAL_TOKEN a TF C Characters for logical values
DELDBE_MAX_BUFFERSIZE a 128 N Makx. size for record in KB

*) ro=READONLY , a=ASSIGNABLE

The default values are listed in the column "Value".

DELDBE_MODE

This constant is used to set the operating mode of the DELDBE. There are three operating
modes: auto-field, multi-field and single field. The default operating mode is auto-field. In
the following line the auto field operating mode is changed to single field:

DbeInfo(COMPONENT_DATA, DELDBE_MODE, DELDBE_SINGLEFIELD)

The three possible operating modes are described in the following sections. The first line of
the ASCII file in the delimited format differs depending on the operating mode.

Alaska Xbase* * Basic Users Guide 121

DELDBE (DATA Component)

Mode: DELDBE_AUTOFIELD

The DELDBE_AUTOFIELD mode is the default operating mode. The DELDBE is in this
mode after it is loaded using DbeLoad(). If a TXT file is created using DbCreate() for a file
in delimited format in auto-field mode, it contains a single line containing FCount()-1
commas. Thus, the first line of a delimited file in auto-field mode always contains commas
representing the number of fields per record. Example:

#include "DelDbe.ch"

DbeLoad("DELDBE") // load DELDBE

aStruct := { {"CHAR1","C",10,0} , ; // create structure array
{"CHAR2","C",10,0} , // for DbCreate()
{IINUMII IIINII, 6,2} , ;

{"LOGIC", "L", l, O} }

DbCreate("Auto", aStruct, "DELDBE") // create and open TXT

USE Auto VIA DELDBE // file

FOR i:=1 TO 3 // append three records
DbAppend ()

REPLACE FIELD->FIELD1 WITH Replicate(Chr(64+1i),1), ;
FIELD->FIELD2 WITH Replicate(Chr(96+i),1i), ;
FIELD->FIELD3 WITH 1071, ;

FIELD->FIELD4 WITH (1%2 == 1)
NEXT

In this code, a TXT file with four fields is created in delimited format. The fields do not
correspond to the names from the structure array, but are numbered and are prefixed with
"FIELD". After the above code runs, the file "Auto.txt" contains:

o

"A","a",10.00,T
"BB", "bb",100.00,F
"ceev, "eee,1000.00, T

In the first line there are three commas (more precisely, field separators), which correspond
to the number of fields minus one. The lines that follow contain the data in delimited format:
character values are enclosed in quotation marks, numeric values consist only of digits, and
logical values consist of one alphabetical character.

Mode: DELDBE_MULTIFIELD

The DELDBE_MULTIFIELD mode is an operating mode that was created especially for
control files for form letters. Control files are used by text processing programs and contain
the variable data for form letters. Generally the first line of a control file contains the field
names, or variable names defined in the form letter that are replaced by values from the
control file. In multi-field operating mode, the first line of the TXT file contains the field
names. The following example creates a typical control file where the delimiting characters

122

Alaska Xbase* * Basic Users Guide

DELDBE (DATA Component)

for character values and the separators for fields are changed:

#include "DelDbe.ch"

? DbeLoad("DELDBE"")
? DbeSetDefault ("DELDBE")

aStruct := { {"CHAR1","C",10,0} , ;
{"CHAR2","C",10,0} , ;
{“NUM" ,"N", 6’2} , ;

{"LoGIc","L", 1,0} }
// switch to multi-field
DbeInfo(COMPONENT_DATA, DELDBE_MODE, DELDBE_MULTIFIELD)
// semicolon instead of
// comma
DbeInfo(COMPONENT_DATA, DELDBE_FIELD_TOKEN, ";")
// no separator for
// character values
DbeInfo(COMPONENT_DATA, DELDBE_DELIMITER_TOKEN, Chr(0))

DbCreate("Multi", aStruct, "DELDBE")
USE Multi VIA DELDBE

FOR i:=1 TO 3 // fields have field names
DbAppend ()
REPLACE FIELD->CHAR1 WITH Replicate(Chr(64+i),1), ;
FIELD->CHAR2 WITH Replicate(Chr(96+1),1), ;
FIELD->NUM WITH 1071, ;
FIELD->LOGIC WITH (i%2 == 1)
NEXT

In this code, a TXT file in delimited format is created containing four ficlds. The field names
correspond to the names from the structure array and are stored in the first line of the TXT
file. A semicolon is used as the field separator and character values are not enclosed in
delimiting characters. After this example runs, the file "Multi.txt" contains:

CHAR1 ; CHARZ2 ; NUM; LOGIC
A;a;10.00;T
BB;bb;100.00;F
CCC;ccc;1000.00;T

The first line contains the field names which correspond to the variable names of the control
file. Subsequent lines contain the data for the form letter. The default action of delimiting
character values is turned off. This is done by specifying the character Chr(0) as the
delimiting character. The semicolon is defined as the field separator.

In "multi-field" operating mode, fields of a TXT file in delimited format can be specified by
their field names, since the field names are defined in the TXT file. This is a special case and
is generally used only to create control files for text processing from DBF files.

Alaska Xbase* * Basic Users Guide 123

DELDBE (DATA Component)

Mode: DELDBE_SINGLEFIELD

The mode DELDBE_SINGLEFIELD is an operating mode that allows any ASCII file to be
opened and managed by the DELDBE. In this mode, the DELDBE treats an ASCII file as if
the file contained only a single field. The field is treated as containing no delimiters, but
characters indicating the end of a record are required. For an ASCII file, this generally
corresponds to end of line characters (carriage return+line feed, Chr(13)+Chr(10)). In "single
field" mode, a field is identical to a record and the DELDBE reads an ASCII file line by line.
This allows database operations like DbSkip(), DbGoTop() or DbGoBottom() to be executed
on an ASCII file. In this operating mode the DELDBE can manage many different ASCII
files. It should be noted that in this mode the first line of an ASCII file is interpreted as "data"
and not read for field information. Example:

#include "DelDbe.ch"

? DbeLoad("DELDBE")
? DbeSetDefault ("DELDBE")

aStruct := { {"CHAR1l","C",10,0} , ;
{"CHAR2","C",10,0} , ;
{nNUM" ’uNn, 6,2} ,

{"LOGIC","L", l,O} }
// switch to single field
DbeInfo(COMPONENT_DATA, DELDBE_MODE, DELDBE_SINGLEFIELD)

DbCreate("Single", aStruct, "DELDBE")
USE Single VIA DELDBE

FOR i:=1 TO 3

DbAppend ()

REPLACE FIELD->FIELD1 WITH Replicate(Chr(64+i),1i)
NEXT

Regardless of the structure array provided to DbCreate(), a TXT file in the single field mode
is created as an empty file containing no field information. The DELDBE treats the TXT file
as if it is a file with a single field. The field name is FIELD1. With exception of characters
that represent the end of a record, the DELDBE does not recognize any other delimiting
characters in this operating mode. The contents of the file "Single.txt" created in the above
example would be as follows:

A
BB
ccc

Each line of the file contains only the data written into the file using REPLACE after
DbAppend() added a new record.

The "single field" operating mode is suitable for viewing any ASCII file with rows that can
be identified by distinct end of line character(s).

124

Alaska Xbase* * Basic Users Guide

DELDBE (DATA Component)

DELDBE_RECORD_TOKEN

The end of a record in a TXT file is generally identified by the two characters carriage
return+line feed (Chr(13)+Chr(10). The delimiter for a record can be changed using the
function Dbelnfo(). The delimiter must contain at least one character and can have a
maximum of two characters.

DELDBE_FIELD_TOKEN

In the delimited format (auto-field and multi-field mode), fields are set off from each other by
a separator. The comma is the default separator. The following program line specifies the
semicolon as the separator:

DbeInfo(COMPONENT_DATA, DELDBE_FIELD_TOKEN, ";")

DELDBE_DELIMITER_TOKEN

Values of the "character" type are bracketed by certain characters in the delimited format.
The default is the double quotation mark. The following call specifies the single quotation
mark as the delimiting character for character values:

DbeInfo(COMPONENT_DATA, DELDBE_DELIMITER_TOKEN, "'")

DELDBE_DECIMAL_TOKEN

The character used to mark decimal places in numeric values can also be specified. The
default is the period. The following program line specifies the comma as the separator for
decimal places in numeric values:

DbeInfo(COMPONENT_DATA, DELDBE_DECIMAL_TOKEN, ",")

When the character for decimal places is changed, it must not be the same as the field
separator. If it is the same, places after the comma are looked at as a separate field containing
another numeric value.

DELDBE_LOGICAL_TOKEN

For logical values, the two characters representing true and false can be specified. The
default is "TF". If this setting is changed, a character string consisting of two characters must
be specified. The first character represents true and the second character represents false. The
following call specifies the character "Y" for the logical value true and the character "N" for
the logical value false:

DbeInfo(COMPONENT_DATA, DELDBE_LOGICAL_TOKEN, "YN")
Alphabetical characters must be indicated for logical values used with the DELDBE. The

characters "1" and "0" for "true" and "false" are not permitted, since they are interpreted as
numeric values.

Alaska Xbase* * Basic Users Guide 125

DBFDBE (DATA component)

DELDBE_MAX_ BUFFERSIZE

The delimited format allows fields and records to become larger or longer. A character field
containing 10 characters can be assigned a character string containing 20K characters. The
memory space occupied by a field in a record must be dynamically enlarged (and also
reduced) after an assignment. This automatically occurs with the DELDBE. The dynamic
allocation of memory space in a file (not in memory) implies a considerable limitation of
speed in database operations with the DELDBE. To optimize the speed of the DELDBE, the
read buffer for a record loaded using the DELDBE is limited to 1 KB (1024 bytes). As soon
as a record longer than 1024 byte is read, the read buffer is doubled. This behavior requires
that an upper limit be defined, or the maximum length of a record which no record can
exceed. The upper limit for the length of a record is set at 128KB by default. When any line
of an ASCII file managed by the DELDBE is anticipated to be longer than 128KB characters,
the maximum size of the read buffer must be increased. The following program line increases
the maximum size of the read buffer of the DELDBE to 256 kilobytes:

DbeInfo(COMPONENT_DATA, DELDBE_MAX BUFFERSIZE, 256)

12.4.3. DBFDBE (DATA component)

The DatabaseEngine DBFDBE manages files in the DBF format. This file format is used by
all Xbase dialects to store data. In a DBF file, data is stored in the form of a table where a
record represents a row and a field represents a column. Rows in the table have a fixed
length, and each field stores values which always have the same data type.

The DBFDBE is used as a DATA component of the compound DBE DBFNTX which is
created each time an Xbase** program starts. This occurs in the function DbeSys() whose
source code is contained in the file .\SOURCE\SYS\DBESYS.PRG. The DBFDBE performs
all database operations that can be executed on a DBF file. This includes navigation using
DbSkip() as well as the definition of filters and marking records for deletion using
DbDelete(). In addition, the DBFDBE manages memo files which contain the text of memo
fields.

Database operations that require an index can not be performed by the DBFDBE. For these
operations, the DatabaseEngine must be combined with an ORDER component to create a
compound DBE. Xbase** provides the NTXDBE which manages index files (see the next
section).

The DBFDBE has some limitations which are caused by the format of DBF files or by factors
associated with the concurrent operation with Clipper applications.

126 Alaska Xbase " - Basic Users Guide

DBFDBE (DATA component)

The following table gives an overview:

Specifications for DBF files

Element Specification

File size Limited to the offset for record locks,
default is 1 GB (10”9 bytes)

Max. number of fields Not limited

Max. number of records (Offset for record locks - Header() - 1) / RecSize()

Data types C,D,L,N,M

Character values Max. 64 KB

Date values Fields always 8 bytes

Logical values Fields always 1 bytes

Numeric values Fields contain max. 19 bytes, including
decimal point and negative signed prefix

Decimal character Period

Memo Fields always 10 bytes; contents of the

fields (text) stored in memo files and the
length of the text in memo ficlds is not
limited

Size of a memo file Limited only by system resources

Fields in a DBF file are strongly typed and have a fixed length. This is predefined in the file
structure. The maximum value that can be stored in numeric fields depends on field length
and decimal point. For negative values, a minus sign limits the smallest value additionally.
Any attempt to store a numeric value too large or too small to fit into a database field results
in a runtime error. Therefore it is necessary to consider the range of numeric data to be stored
when numeric fields are specified.

In case of character fields, the field length limits the maximum number of characters that can
be stored. If the number of characters in a string exceeds the field length, the character string
is truncated and no runtime error is raised.

Using DBFDBE there is no limitation on the length of memo fields and memo files, as there
is with the DOS-based 64 KB limit. Memo fields can store text longer than 64 KB characters,
and memo files (DBT files) can become larger than 32 MB. However, these issues must still
be considered when Xbase** applications use the same database as DOS xBase applications.

The maximum file size for a DBF file depends on the offset used for record locks during
concurrent operation (see the description of DBFDBE_LOCKOFFSET below). Under
Clipper, the offset varies from version 5.01 to 5.2 and can be set to a matching value in

Alaska Xbase' * Basic Users Guide 127

DBFDBE (DATA component)

Xbase**. This allows Xbase** to operate concurrently with existing Clipper applications in a
heterogeneous network where some of the work stations run under DOS and others under a
32bit operating system. The maximum number of records is dependent on both the offset for
records and on the length of records. Generally, the maximum number of records can be
calculated as the offset for records locks divided by the length of a record.

The DBFDBE uses two reserved identifiers for field variables: _LOCK and _NULL. _LOCK
is used for automatic record locking and _NULL is reserved for future purposes. If the
DBFDBE is run in autolock mode, a DBF file must have the _LLOCK field (see below).

Configuration of the DBFDBE with Dbelnfo()

The DBF DatabaseEngine can be configured in specific ways using the function Dbelnfo().
For example, the file extension for database files can be specified, or the operating mode for
record locks can be set. The following table gives an overview of the #define constants that
can be passed to the function Dbelnfo() for the DBFDBE:

Constants for Dbelnfo() with the DBFDBE

Constant *) Value Data type Description
DBE_EXTENSION a DBF C Extension for DBF file
DBFDBE_MEMOFILE_EXT ro DBT C Extension for memo file
DBFDBE_MEMOBLOCKSIZE ro 512 N Block size for memos
DBFDBE_LOCKOFFSET a 2*10M9 N Offset for record locks
DBFDBE_LOCKMODE a DBF_NOLOCK N Mode for record locks
DBFDBE_LOCKRETRY a 3 N Maximum number of

new lock attempts

with RLock()
DBFDBE_LOCKDELAY a 25 N Time interval for new

lock attempts with
RLock()

(Unit is 1/100 seconds)
*) ro=READONLY , a=ASSIGNABLE

The default values are shown in the column "Value".

DBE_EXTENSION

This constant is valid for all DBEs and defines the default file extension for files which are
managed by the DBE. The default file extension DBF for the DBFDBE can be changed. This
is especially useful in protecting data. For example, some users use the DIR command to
search for all files with a DBF extension. Simply changing the extension is enough to keep
these users from attempting to manipulate the file outside the application which uses it.

128

Alaska Xbase - * Basic Users Guide

DBFDBE (DATA component)

DbeInfo(COMPONENT_DATA, DBE_EXTENSION, "FBD")

This call to Dbelnfo() sets the default file extension for DBF files to "FBD".

DBFDBE_MEMOFILE_EXT

This constant allows the default file extension for memo files (DBT files) to be determined.
The default file extension is predetermined by the DBT file format and can not be changed.

DBFDBE_MEMOBLOCKSIZE

This constant returns the minimum block size used to store text in a memo file. The default
block size for the DBFDBE is 512 byte. It can not be changed. Within a memo file, texts or
character strings are stored in multiple blocks each of which is 512 bytes. When text that is
only 100 bytes long is stored, it still occupies 512 bytes in the memo file.

DBFDBE_LOCKOFFSET

This constant returns or changes the offset for record locks. The default offset is 2 gigabytes.
It can be modified in order to guarantee concurrent operation of Xbase** applications with
Clipper applications. The offset is 1 gigabyte under Clipper 5.01 and 2 gigabytes under
Clipper 5.2 when the NTXLOCK?2.0BI file is linked into the application. Changing the offset
for record locks should only be done with a detailed knowledge of the lock mechanism for
records. Example:

DbeInfo(COMPONENT_DATA, DBFDBE_LOCKOFFSET, 1079)

In this program line the offset for record locks handled by the DATA component of the
compound DBE DBFNTX is set to 1 gigabyte.

Warning: If the DBFDBE is set as a DATA component of a compound DBE, the change to
the offset must also be performed for the ORDER component. For example, in the compound
DBE DBFNTX, the DBFDBE and the NTXDBE must have the same offset for record locks.
The offset for the NTXDBE is set using the constant NTXDBE_LOCKOFFSET.

DBFDBE_LOCKMODE

The DBFDBE supports record locks to allow concurrent operation of database applications.
The DBFDBE has two operating modes for locking records. One operating mode is
compatible with Clipper and requires explicit record locking and unlocking to be performed
when any records are updated. The other mode uses the extended locking mechanisms of
Xbase++ which support automatic record locking.

Mode: DBFDBE_NOLOCK

The mode DBFDBE_NOLOCK is the default operating mode. The DBFDBE is in this
operating mode after it is loaded using DbeLoad(). This is also the mode of the compound
DBE DBFNTX available each time an Xbase** program starts. In concurrent operation in this

Alaska Xbase* * Basic Users Guide 129

DBFDBE (DATA component)

operating mode, a record lock must be explicitly set using RLock() or DbRLock() before a
value in a field can be changed. If new values are assigned to fields or field variables during
concurrent operation without a record lock being set, a runtime error occurs. This behavior is
compatible with Clipper.

Mode: DBFDBE_AUTOLOCK

In the DBFDBE_AUTOLOCK mode, the DBFDBE automatically executes a record lock
when a record or a field is changed during concurrent operation. The lock is automatically
removed after the change has been written to the file. This mode is not compatible with the
lock mechanism implemented in Clipper. This means that this operating mode can not be
used in concurrent operation between Xbase** and Clipper programs. The problem arises
because the DBFDBE_AUTOLOCK mode uses the lock mechanisms from the operating
system instead of logical record locks set using a virtual offset. The operating system permits
locking a record directly.

The automatic record lock smoothly handles a potential conflict that can occur during
concurrent operation: the problem of the "lost update". This problem can occur when a
record is processed at the same time by two programs A and B. Program A reads a record
into memory, edits the values of the fields and writes the changes back to the database.
Program B reads the record at the same time as program A, changes the values and writes its
own set of changes back into the database after program A has just written its data. This
situation causes a "lost update” scenario, because the data written into the database by
program A is overwritten by the data of program B and is therefore lost.

The problem of the "lost update” is solved in the DBFDBE_AUTOLOCK mode because
only the first set of data is automatically written to the file when two programs process the
same record at the same time. When program B reads a record at the same time as program
A, only the data from the program that first writes its changes back to the database is
generally valid.

In order for the DBFDBE to recognize and avoid the scenario of the "lost update”, a database
must have a field _LOCK of type "C" with the field length 4. It is used to store a counter in
binary format. The DBFDBE_AUTOLOCK operating mode does not function without the
field _LOCK. The DBFDBE uses the value of the field _LOCK to recognize this potential
problem situation and avoid the "lost update” scenario.

Example:

When program A reads a record, the value of _LOCK might be 100. At the same time
program B reads the same record. The value of _LLOCK for program B is also 100. Program
A changes the data and writes the changes back into the record. In performing this update, the
DBFDBE locks the record, writes the values into the fields and increments the value in the
field _LLOCK. The DBFDBE then unlocks the record. The value of _LOCK is now 101.
When program B attempts to update the record with its own changes, the operation fails
because the value of _LLOCK is still 100 for program B. It does not match the value of
_LOCK in the database. Program B wants to change data that has already been changed by

130

Alaska Xbase " * Basic Users Guide

DBFDBE (DATA component)

program A. The data from program A is retained and the attempt by program B to gain write
access causes a recoverable runtime error.

Such a runtime error should always be handled using the control structure BEGIN
SEQUENCE...ENDSEQUENCE and an error code block. In this case, it is the responsibility
of the programmer to decide whether the first or last change should be valid in the "lost
update" scenario. An example of how the problem of the "lost update" can be handled is
shown in the following program lines:

bError := ErrorBlock({le| Break(e)})
USE Customer

cLName Customer->LName // read fields into
cFName := Customer->Fname // memory variables

H

@ 10,10 SAY " Last Name" GET cLName // edit memory
@ 11,10 SAY "First Name" GET cFName // variables
READ

DO WHILE .T.
BEGIN SEQUENCE
REPLACE Customer->LName WITH cLName , ;
Customer->FName WITH cFName
COMMIT
RECOVER
i := Alert("Data has been changed by another station", ;
{"Do not save", "Save anyway"})
IF i==
LOOP
ENDIF
ENDSEQUENCE
EXIT
ENDDO

ErrorBlock(bError)

In this example, the runtime error that occurs in the case of the "lost update" scenario is
captured using RECOVER and the decision whether the changed data should still be stored is
the responsibility of the user. If the "lost update" runtime error occurs, the field _LOCK is
reread and the value in the data buffer (memory) matches the value in the database field. It is
then sufficient to rewrite the modified values into the database. In the example, this is
accomplished using the LOOP statement which is only reached if there is an error.

DBFDBE_LOCKRETRY

When the DBFDBE is in DBFDBE_AUTOLOCK operating mode, it automatically sets a
record lock as soon as data is to be written into the database (DBF file). In concurrent

Alaska Xbase** Basic Users Guide 131

DBFDBE (DATA component)

operation there is no guarantee that a record lock can be achieved (the record may be locked
by another user). When a record lock fails the DBFDBE tries to relock the record up to a
specified maximum number of times. The maximum number of attempts that will be made to
lock arecord is set using DBFDBE_LOCKRETRY. The default value is 3.

DBFDBE_LOCKDELAY

In DBFDBE_AUTOLOCK operating mode, the DBFDBE automatically tries to lock a
record before changes are written into the database. If in concurrent operation the record lock
fails, the DBFDBE repeats the attempt to lock the record a maximum of
DBFDBE_LOCKRETRY times. By default, the DBFDBE waits 25 hundredths of a second
(1/4 second) before it makes another attempt to lock the record. DBFDBE_LOCKRETRY is
used to set the duration of the delay between attempts to lock a record. The unit is

17100 second.

Retrieve information with the function DbInfo()

When a DBF file is opened, an instance of the DBFDBE is created. The instance is a
database object (DBO) and includes all settings of the DBFDBE. The DBF database object
represents the work area in which the DBF file is opened and it manages the open DBF file.
The function DbInfo() can be used to retrieve information about the DBF DBO. A #define
constant which identifies what specific information is required must be passed to the
function. The constants that can be passed to function DbInfo() for the DBFDBE are listed in
the following table:

Constants for DbInfo() with the DBFDBE

Constant *) Value Datatype Description
DBO_FILENAME ro C Complete file name
DBFDBO_MEMOFILE_ EXT ro DBT C Extension for memo file
DBFDBO_MEMOBLOCKSIZE ro 512 N Block size for memo fields
DBFDBO_LOCKMODE ro #define N Mode for record locks
DBFDBO_LOCKOFFSET ro 2*¥10"9 N Offset for record locks
DBFDBO_LOCKRETRY ro 3 N Number of lock attempts
DBFDBO_LOCKDELAY ro 25 N Time interval between

lock attempts

(unit: 1/100 second)
DBFDBO_DBFHANDLE ro 0 N File handle of DBF file
DBFDBO_DBTHANDLE ro 0 N File handle of DBT file

*) ro=READONLY , a=ASSIGNABLE

The function DbInfo() returns the settings for the instance of the DatabaseEngine DBFDBE
active in a work area. Instead of DBFDBE_, the #define constants for DbInfo() begin with

132

Alaska Xbase* * Basic Users Guide

FOXDBE (DATA component)

DBFDBO_. In the case of a database object, these settings can only be read and not be
redefined (READONLY instead of ASSIGNABLE).

12.4.4.FOXDBE (DATA component)

The DatabaseEngine FOXDBE manages database files compatible with FoxPro. Their
structure complies with the DBF format but they may contain additional field types other than
Character, Date, Logical Numeric or Memo. FoxPro specific field types are automatically
converted to Xbase* compatible data types when an Xbase* application accesses databases
created by FoxPro. '

The major difference to the DBFDBE is the file format for memo files which is managed
more efficiently. Memo files of the FOXDBE have FPT as their default file extension, not
DBT. With the FPT file format, it is possible to store any binary data in memo fields, while
only text can be stored in memo fields using the DBT file format. In addition, the block size
which represents the minimum space used for data stored in a memo field can be defined. In
the DBT format the block size is 512 bytes while the FOXDBE supports block sizes in the 33
bytes to 64 kb range.

The FOXDBE accounts for FoxPro specific features of the DBF format plus other factors
associated with the concurrent operation with FoxPro applications. The following table gives
an overview:

Specifications for FoxPro compatible DBF files

Element Specification
File size Limited to 2”31 bytes (2 gigabytes)
Max. number of fields 255
Max. number of records (2731 - Header() - 1) / RecSize()
Data types for fields
FoxPro B,C,D,F,G,LL N M, T, Y
Xbase* F,C,D,N,O,LL,N,M, T, Y, V, X
Memo file size Limited to 2”31 bytes (2 gigabytes)
Memo block size 64 Bytes

(adjustable between 33 bytes and 64 kb)

FoxPro supports up to eleven different data types for fields when creating databases. In the
data definition language (DDL), each field type is identified by a letter. The Xbase** DDL
uses the same letters for most of the field types. However, in some cases they are different to
FoxPro:

Alaska Xbase* + Basic Users Guide 133

FOXDBE (DATA component)

Mapping of FoxPro field types in the Xbase** DDL

Description Field type Length Field type Valtype()
FoxPro Xbase+

Double B 8 F N
Character (text) *) C 1-254 C C
Character (binary) C 1-254 X C
Date D 8 D D
Float F 1-20 N N
Generic G 4 0] M
Long signed integer I 4 I N
Logical L 1 L L
Memo (text) *) M 40r10 M M
Memo (binary) M 4or10 \' M
Numeric N 1-20 N N
Time stamp T 8 T C
Currency Y 8 Y N

*) Data is converted according to SET CHARSET

If a numeric field of the type Double is to be created in a new database file, its field type is
specified with the letter B in FoxPro, while Xbase** uses the letter F for declaring a field as
Double in the call to the DbCreate() function. These fields store numeric values in binary
format and always require 8 bytes in the database. In this way, they differ from numeric fields
having the DDL type "N" where numeric values are stored as a sequence of digits and where
the range is limited by the field length. However, both types of fields store numeric data and
the function Valtype() returns the letter N in both cases. Therefore, one must distinguish
between the definition of a field (DDL) and the data type stored in a field. The FOXDBE
extends the data definition language for DBF files but does not add new data types used for
operations at runtime of an Xbase** program.

For character fields and memo fields, the FOXDBE distinguishes text from binary data. Text
is subject to an automatic codepage conversion according to SET CHARSET, while binary
data is read from or written to a database without this conversion.

Configuration of the FOXDBE with Dbelnfo()

The DatabaseEngine can be configured in specific ways using the function Dbelnfo(). For
example, the file extension for database files can be specified, or the block size for memo
fields can be set. The following table gives an overview of the #define constants which can
be passed to the function Dbelnfo() for the FOXDBE:

134

Alaska Xbase* * Basic Users Guide

FOXDBE (DATA component)

Constants for Dbelnfo() with the FOXDBE

Constant *) Value Datatype Description
DBE_EXTENSION a DBF (] Extension for DBF file
FOXDBE_MEMOFILE_EXT a FPT C Extension for memo file
FOXDBE_MEMOBLOCKSIZE a 64 N Block size for memo fields
FOXDBE_MODE a #define N Mode for FoxPro 2.x or 3.x
FOXDBE_LOCKOFFSET a 2¥10"9 N Offset for record locks
FOXDBE_LOCKRETRY a 3 N Maximum number of new
lock attempts with RLock()
FOXDBE_LOCKDELAY a 25 N Time interval for new

lock attempts with RLock()
(Unit is 1/100 seconds)
*) ro=READONLY , a=ASSIGNABLE

The default values are shown in the column "Value".

DBE_EXTENSION

This constant is valid for all DBEs and defines the default file extension for files which are
managed by the DBE. The default file extension DBF for the FOXDBE can be changed.

DbeInfo(COMPONENT_DATA, DBE_EXTENSION, "FOX")

This call to Dbelnfo() sets the default file extension for DBF files to "FOX".

FOXDBE_MEMOFILE_EXT

This constant is used to determine or change the default file extension for memo files (FPT
files).

FOXDBE_MEMOBLOCKSIZE

This constant returns or changes the minimum block size used to store data in a memo file.
The default block size for the FOXDBE is 64 bytes. Within a memo file, texts or character
strings are stored in multiple blocks each of which is 64 bytes. When text which is only 100
bytes long is stored, it still occupies 128 bytes in the memo file.

FOXDBE_MODE

The FOXDBE can manage database files in FoxPro 2.x or 3.x format and higher (Visual
FoxPro format). The following lines show how to select the DBF format:

// FoxPro 2.x
DbeInfo(COMPONENT DATA, FOXDBE_MODE, FOXDBE_MODE_OLD)

Alaska Xbase' * Basic Users Guide 135

NTXDBE (ORDER component)

// Visual FoxPro (default)
DbeInfo(COMPONENT_DATA, FOXDBE_MODE, FOXDBE_MODE_VISUAL)

By default, the FOXDBE uses the Visual FoxPro file format.

Retrieve information with the function DbInfo()

When a DBF file is opened, an instance of the FOXDBE is created. The instance is a
database object (DBO) and includes all settings of the FOXDBE. The DBF database object
represents the work area in which the DBF file is opened and it manages the open DBF file.
The function DbInfo() can be used to retrieve information about the DBO (the work area). A
#define constant which identifies what specific information is required must be passed to the
function. The constants that can be passed to function DbInfo() for the FOXBE are listed in
the following table:

Constants for DbInfo() with the FOXDBE

Constant *) Value Data type Description
DBO_FILENAME ro C Complete file name
FOXDBO_MEMOFILE_EXT ro FPT C Extension for memo file
FOXDBO_MEMOBLOCKSIZE ro 64 N Block size for memo fields
FOXDBO_MODE ro #define N FoxPro 2.x or 3.x database
FOXDBO_LOCKOFFSET ro 2*¥10"9 N Offset for record locks
FOXDBO_LOCKRETRY ro 3 N Number of lock attempts
FOXDBO_LOCKDELAY ro 25 N Time interval between

lock attempts (unit: 1/100 second)
*) ro=READONLY , a=ASSIGNABLE

The function Dblnfo() returns the settings for the instance of the DatabaseEngine FOXDBE
active in a work area. Instead of FOXDBE_, the #define constants for DbInfo() begin with
FOXDBO_. In the case of a database object, these settings can only be read and not be
redefined (READONLY instead of ASSIGNABLE).

12.4.5. NTXDBE (ORDER component)

The DatabaseEngine NTXDBE manages index files in the NTX format. This is the native
Clipper index file format and used as the default format for building indexes in Xbase*. The
default can be changed by modifying the file DBESYS.PRG in the .\SOURCE\SYS
directory. The DbeSys() function in this file is automatically called at program start, prior to
the Main procedure. A customized DBESYS.PRG must then be linked explicitly to the EXE
file.

136

Alaska Xbase* * Basic Users Guide

CDXDBE (ORDER component)

The NTX file format has undergone changes. The NTXDBE supports the NTX file format as
it is defined by Clipper 5.2. An overview of its features is listed below:

Specifications for NTX files

Element Specification

File size Limited to the offset for record locks,
the default is 2 GB (2*10"9 Byte)

Data types C,D, L, N, no memo

Max. length for:

- index expression 255 characters
- FOR expression 255 characters
Indexes per file One
FOR expression Supported
WHILE expression Supported
TAG expression Supported
EVAL..EVERY clause Ignored

The only setting that can be set using Dbelnfo() for the NTXDBE is the offset for record
locks. Since record locks can be set in databases which are sorted by an index, the index file
must also be locked. A record lock begins at a logical offset and the default offset is 2
gigabyte. This offset can be changed. When it is changed for the DBFDBE, the same value
must be entered for the NTXDBE. An example for the compound DBE DBFNTX is:

DbeInfo(COMPONENT ORDER, NTXDBE_LOCKOFFSET, 1079)

In this line of code, the offset for record locks managed by the ORDER component of the
compound DBE DBFNTX is set to 1 gigabyte (compatible to Clipper 5.01).

12.4.6. CDXDBE (ORDER component)

The DatabaseEngine CDXDBE manages index files in the CDX format. This file format
originated in FoxPro and has undergone changes. By default the CDXDBE supports the CDX
file format as defined by FoxPro. In addition, the CDXDBE provides full interoperability
with Clipper RDDs Six and Comix.

The major advantage of the CDX file format is its capability of maintaining multiple indexes
in one index file. It also supports conditional indexes where only a subset of database records
is referenced in the index. This is accomplished by a FOR condition which may be specified
on index creation. An overview of the CDXDBE features is given in the following table:

Alaska Xbase' * Basic Users Guide 137

CDXDBE (ORDER component)

Specifications for CDX files

Element Specification

File size Limited to the offset for record locks,
the default is 2 GB (2 * 1079 Byte)

Data types C,D, L, N, no memo

Max. length for both
index and FOR expression

Indexes per file

FOR expression
WHILE expression
TAG expression
EVAL..EVERY clause

512 characters
Not limited

Supported
Supported
Supported
Ignored

138

Alaska Xbase* * Basic Users Guide

Multi-tasking and Multi-threading

13. Multi-tasking and Multi-threading

This chapter describes functions which allow the Xbase** programmer to access special
capabilities of the operating system at the Xbase** language level. These functions provide
access to multi-tasking and multi-threading.

"Multi-tasking" is the capability of the operating system to run several application programs
simultaneously. Each application program is embedded in a process. A process contains at
least one "thread" where the program code is executed. Program code is executed only in a
thread, not in a process. Several threads can be active within a process. This multi-threading
capability of the operating system allows various parts of the same application program to run
at the same time.

13.1. Start multiple processes - multi-tasking

The function RunShell() executes any program from within an Xbase** application as a new
process. The number of processes that can be started depends on available memory
(including free space on the hard disk), but is limited by the operating system. To take full
advantage of RunShell(), a comprehensive knowledge of the command START and of the
commands associated with the command processor are required. When commands are passed
to the command processor, the switch /C should always be considered. Detailed information
is given in the online help of the operating system.

The function RunShell() starts a new instance of the command processor and passes a
character string to it that is executed on the command line. Under Windows 95 the default
command processor is COMMAND.COM and for OS/2 and Windows NT it is CMD.EXE.
The function RunShell() must receive at least one parameter to be passed on to the command
processor, which can be a null string (""):

XResult := RunShell("")

In the line above, RunShell() starts a new instance of the command processor, a new window
is opened and the Xbase** application is stopped until the window is closed. This is a result
of the default values for other parameters that can be passed to RunShell(). These additional
parameters can specify whether an Xbase** application is dependent on or independent of the
newly started command processor.

// calling a program without specifying
// command line parameters (""), but specifying
// asynchronous execution (.T.)

RunShell("", "PROGRAM.EXE", .T.)

Alaska Xbase* * Basic Users Guide 139

Start multiple processes - multi-tasking

This line of code starts a program asynchronously in a new window. The program name is
specified as the second parameter and no command line arguments are passed. The execution
of the Xbase** application which invoked RunShell() is continued by clicking on the Xbase*
application window with the mouse. When the third parameter contains the logical value .T.
(true), the new program is started and the Xbase** application continues to execute
independently. If the value is .F. (false), the Xbase* application waits until the newly started
program has terminated before it continues executing.

The program can also be started as a background process and, in such case, the Xbase**
application remains active.

// Calling a program without specifying

// command line parameters ("").

// Use asynchronous execution (.T.)

// and run it as a background process (.T.)

RunShell("", "PROGRAM.EXE", .T., .T.)

The fourth parameter determines whether the new process is started in the background or
foreground of the Xbase** application. By default, RunShell() starts new processes in the
foreground. This means that the new window is brought to the front and receives input focus.
If a "full screen” session is started using RunShell(), the function automatically switches to
character mode. When the logical value .T. (true) is specified as the fourth parameter, the
new process starts in the background of the Xbase** application and the Xbase* application
keeps input focus.

The examples of calling a program show how an application can be started by passing the file
name. The file name can also be passed to the function RunShell() as a command line
parameter. The following two lines are equivalent:

RunShell("", "PROGRAM.EXE", .T.)
RunShell ("/C PROGRAM.EXE", , .T.)

In both cases, the program is started asynchronously. In the second line, the file name is
contained in the command line parameter for the command processor. For this to work, the
command line must begin with "/C". The following code shows additional examples for using
the function RunShell():

// execute the program REVERSI.EXE asynchronously in
// the background

RunShell("", "REVERSI.EXE", .T., .T.)

// DOS session (/DOS) in the foreground (/F) in a window (/WIN)
// with the window title "DOS session" under 0S/2

RunShell ('/C START "DOS session" /F /WIN /DOS')

140

Alaska Xbase* * Basic Users Guide

Using multiple threads

// Full-Screen DOS session (/DOS) in the background (/B) under 0S/2
RunShell('/C START /B /DOS')

// Indirekt call of the Windows program EXPLORER.EXE
// using the START command.
// The explorer displays the current directory

? RunShell("/C START EXPLORER.EXE .")

The command START invokes a new command processor and passes a command line to it.
This allows for the execution of any program including passing of parameters. When used
with START, RunShell() offers tremendous flexibility in starting any program from an
Xbase** application and passing parameters to it (Note: enter "Help Start" or "Start /?" on the
command line to get detailed information about the START command from the operating
system's online help).

13.2. Using multiple threads

Multi-threading is a special characteristic of the operating system which allows an application
program to be divided into various components which can be executed independently and
simultaneously. The classic example for this is an application that provides the ability to
evaluate data and print reports from one database while data input in another database is
occurring. The idea is that the user starts one time-consuming procedure, and immediately
begins working with another procedure while the first one is still running. In this example, the
evaluation and reporting on one database runs in a different thread than the routine for data
input. However, the database evaluation and report procedure, and the data input procedure
are components of the same application. Another example is a program for data collection
where the data is collected from various sources, with each source being controlled by a
separate thread. Even when data is being received simultaneously from different sources, it
can be reliably recorded.

13.2.1. Execution paths in a program

An application program (the EXE file) is started as a process. A process consists of one or
more threads. Within a process, a thread can be thought of as a separate execution path where
functions and procedures are executed independently from other threads. When a process
consists of several threads, the operating system allocates the microprocessor (CPU) time for
the different threads. Which thread gains access to the CPU (which thread is executed)
depends first on the priority of a thread and then on whether it should execute instructions or
whether it is currently in an idle mode. In multi-threading, the operating system allots each
thread a limited amount of CPU time (called the time slice), and each thread is given its time
in turn. In this way several processes are executed at the same time (multi-tasking), and
within a process several threads can be executed (multi-threading). However, from the point

Alaska Xbase* * Basic Users Guide 141

Execution paths in a program

of view of the CPU, only one thread is executing at any point in time.

The Thread class of Xbase** offers the programmer a tool for taking advantage of
multi-threading in a simple straightforward manner. A thread object must be created and the
object must receive information as to what program code to execute in the thread. The
following example shows the basic approach:

PROCEDURE Main

LOCAL oThread := Thread() :new() // create thread object
CLS
oThread:start ("Sum", 10000) // sum numbers from 1
// to 10000
DO WHILE .T. // display characters during
27 oL // the calculation
Sleep(10)
IF ! oThread:active // Check if thread still runs
EXIT
ENDIF
ENDDO
? "The sum is:", oThread:result
RETURN

FUNCTION Sum(nNumber)
LOCAL i, nSum := 0

FOR 1:=1 TO nNumber
nSum += 1

IF 1 % 100 == 0 // progress display
DispOutAt (MaxRow(), 0, 1)
ENDIF
NEXT

RETURN nSum

The program has the sole purpose of demonstrating the use of a thread object in a short
example (otherwise it is meaningless). The thread object is created using the :new() method
of the Thread class. As soon as a thread object is created, a new thread is available. The
thread is then ready to run. The program code to be executed in the new thread is specified by
calling the :start() method of the thread object. The first parameter is a character string
specifying the identifier for the function or procedure to be executed in the thread. In the
example, the user-defined function Sum() is specified. All other parameters (10000 in this
case) are passed as arguments to the function being executed. After the method :start() is
called, the specified program code is executed in the new thread.

In the example program, two loops run simultaneously. The DO WHILE loop in the Main
procedure outputs a dot on the screen on each pass through the loop. The FOR...NEXT loop
in the function Sum() simultaneously calculates a sum. When the FOR...NEXT loop in the

142

Alaska Xbase " * Basic Users Guide

Visibility of variables in threads

new thread is terminated, the DO WHILE loop is also terminated, because the instance
variable :active signals that the new thread is no longer executing code. The result of the
calculation is contained in the :result instance variable of the thread object.

The thread is created when the thread object is created. Execution of code in the thread is
started using the method :start(). The identifier for the function or procedure to be executed
in the thread is passed to this method as a character string. The symbol or identifier for the
function or procedure must be available at runtime. This means the function or procedure
started in a new thread cannot be declared as a STATIC FUNCTION or STATIC
PROCEDURE. As long as a thread is executing program code, the instance variable :active
has the value .T. (true). When the thread has terminated, the return value of the last function
or procedure executed in the new thread is assigned to the instance variable :result.

13.2.2. Visibility of variables in threads

The ability to divide a program up into different threads presents a new dimension for
programmers who have not previously programmed in a multi-threading environment.
Although creating threads is simple in Xbase**, programming a multi-threaded application
adds new complexity and requirements for the design of programs. In addition, new sources
of error must be considered which may result from different parts of an application being
executed at the same time. First of all, multi-threading affects the visibility of variables in
different threads. The following table shows the differences:

Visibility of variables in different threads

Visibility Storage class

Visible in the process PUBLIC

(all threads) STATIC

Visible in the thread LOCAL

(this Thread) PRIVATE
FIELD

Variables declared as LOCAL or PRIVATE are only visible in the thread where the
declaration occurred. The variables declared with PUBLIC or STATIC are visible in all
threads of a process (application program). Field variables (FIELD) are visible in a work area
of a work space. A work space is bound to a thread. Since work spaces can be moved
between threads, field variables can become visible in different threads. At a given point in
time, a field variable is visible only in one thread.

Whenever program code is divided up into different threads, the possibility of multiple
threads having simultaneous access to the same variable (PUBLIC or STATIC) and changing
it should be avoided. If multiple threads are modifying the same variable, the value of the
variable is not predictable.

Alaska Xbase* * Basic Users Guide 143

Visibility of variables in threads

The following example demonstrates this situation:
STATIC snNumber := 0 // file-wide visible STATIC

PROCEDURE Main
LOCAL i, oThread := Thread():new() // create thread object

oThread:start ("Decrement") // decrement snNumber

FOR 1:=1 TO 10000

snNumber ++ // increment snNumber
NEXT
? "Result:", snNumber // theoretically this is 0
RETURN

PROCEDURE Decrement
LOCAL 1
FOR i:=1 TO 10000
snNumber -- // decrement snNumber

NEXT
RETURN

In the example, two FOR...NEXT loops run simultaneously in two different threads. The
same STATIC variable is accessed in both threads. The first thread increments the variable
10000 times and the second thread decrements the variable 10000 times. Theoretically, the
result would be the value zero. In practice this value is seldom reached. Generally the value
of snNumber at the end of the program is greater than zero. This is because the operating
system independently allocates the processor time for the two threads. The FOR...NEXT loop
in the Main procedure begins incrementing as soon as the first thread is started. Switching
between the threads takes time, and the STATIC variable increments several times before the
second thread has actually started. When the FOR...NEXT loop in the first thread ends, the
entire process is terminated, including the second thread. This means that the FOR...NEXT
loop in the second thread is cancelled before the counter variable i reaches the value 10000.
For this reason, the value of snNumber at the end of the program is almost always greater
than zero.

This program demonstrates that programming multiple threads requires consideration of
special issues. Simultaneous access to the same variables or files by multiple threads should
be avoided. When two threads are using the same variables, the result (or the value of the
variable) is not predictable, since the operating system allocates which thread is to receive
available processor time. The thread which last performed an assignment sets the value of the
variable. As a general rule, the part of the program that is to run in a separate thread should
be written in such way that it can be compiled and linked as an independent program. All
variables in a thread should be protected from access by other threads.

144

Alaska Xbase ' Basic Users Guide

Priorities of threads

13.2.3. Priorities of threads

Multi-threading allows different programs to run at the same time or the same program code
to be simultaneously executed multiple times in different threads. When a value is assigned to
a variable, the value of the variable depends on the thread which is allocated processor time
by the operating system. The processor time allocated to a thread can be influenced by its
defined priority. So the result of the last example program can be changed if a single program
line is added:

STATIC snNumber := 0 // file-wide visible STATIC

PROCEDURE Main
LOCAL i, oThread := Thread():new() // create thread object
// increase priority level
oThread:setPriority(PRIORITY_ABOVENORMAL)
oThread:start ("Decrement") // decrement snNumber

FOR i:=1 TO 10000

snNumber ++ // increment snNumber
NEXT
? "Result:", snNumber // this is always 0
RETURN

PROCEDURE Decrement
LOCAL i
FOR i:=1 TO 10000
snNumber -- // decrement snNumber
NEXT
RETURN

In this example, the priority of the new thread is increased in relation to the current thread
using the method :setPriority(). This causes processor time to be preferentially allocated to
the new thread. This means that the FOR...NEXT loop in the Decrement procedure is
processed first, since the thread in which this loop runs has a higher priority than the thread in
which the Main procedure is running. In this case, the FOR...NEXT loop in the Decrement
procedure runs before the FOR...NEXT loop in the Main procedure. The result of the
program is always zero because snNumber is first decremented 10000 times and then
incremented 10000 times.

The example represents an extreme case in which the order of execution can be precisely
controlled by raising the priority of individual threads. Generally, the order of execution of
threads (the allocation of processor time) depends on several factors which are controlled by
the operating system.

By default, threads in an Xbase** program have the priority PRIORITY_NORMAL and this
is generally adequate. This results in an Xbase** application being given processor time on

Alaska Xbase* * Basic Users Guide 145

Getting information about threads

equal precedence with most other programs. In normal situations, the priority should not be
changed. Changing the priority requires a detailed knowledge of the manner in which the
operating system distributes processor time. Threads receive processor time based on their
priority. Low priority threads receive CPU access if no thread with higher priority is running
or if a higher priority thread has entered a wait state. A higher priority may be temporarily
assigned to a thread with a lower priority to allow it to be executed (starvation boost).

The thread object allows the priority of threads to be changed and it remains the
programmer's responsibility to use this power responsibly. Raising the priority of threads
only provides more processor time to the thread from the operating system. It does not cause
the program to run faster. In the worst scenario, if the priority is set too high, multi-tasking
and multi-threading are no longer possible, since the Xbase** application (or a single thread
in the Xbase** application) is allocated all the processor time. In this case, other programs
cannot run until the Xbase** application has terminated. Changing the priority of threads
demands special care. These settings directly influence preemptive execution of several
programs, or processes, respectively (multi-tasking). They do not affect the performance of
an individual Xbase** application.

13.2.4. Getting information about threads

Two functions exist in Xbase** which are very useful in the context of multi-threading. They
are used in the implementation of program code where the thread object which executes this
code is unknown. The functions are ThreadID() and ThreadObject().

Each thread managed by a Thread object can be identified by a numeric ID. Thread IDs are
consecutive numbers, i.e. the first thread has the ID 1 and it executes the Main procedure. A
Thread object stores the thread ID in its instance variable :threadID. When the function
ThreadID() is called, it retrieves the Thread object of the current thread and returns the value
of the instance variable :threadlD. This again is the numeric ID of the current thread.

The function ThreadObject() is used in a similar way. But instead of the numeric ID, it
returns the complete Thread object which executes the function. Therefore, the result of the
following expressions is always identical:

ThreadID() // Return value of a function
ThreadObject () :threadID // Value of an instance variable

13.2.5. Thread objects know the time

A thread is started by calling the :start() method of a Thread object. Normally, execution of
program code within the thread begins immediately after the method is called. However, it is
possible to define the exact time when the thread is to begin with program execution. This is
done with the :setStartTime() method which must receive a numeric value indicating
"seconds since midnight". Example:

oThread:setStartTime(12*60*60) // 12 o'clock
oThread:start({|| HighNoon() 1})

A Thread object monitors the system timer. Therefore, the routine HighNoon() in the

146

Alaska Xbase* * Basic Users Guide

Thread objects know the time

example is executed at 12 o' clock although the thread is started carlier. The current thread
which has called the :start() method continues to run.

Another form of time-dependent execution of program code is provided by the :setInterval()
method. It defines a time interval for repeated execution of program code by a Thread object.
Each time the interval expires, the Thread object automatically restarts its thread. This
functionality is also provided in a simplified form by the function SetTimerEvent(). A typical
example for this is the continuous display of the current time which can be programmed in
different ways:

/] —mmmmmmmmmm e Example 1 -------------------------——-
SetTimerEvent (100, {|| DispOutAt(0, 0, Time()) })
/] e Example 2 ---------------------------

oThread:start ("ShowTime_A")

PROCEDURE ShowTime_A
DO WHILE .T.
DispOutAt(0, 0, Time())

Sleep(100)
ENDDO
RETURN
/] mmmmmmmmmmmm e Example 3 -------------------------oo
oThread:setInterval(100)
oThread:start("ShowTime_B")

PROCEDURE ShowTime_B
DispOutAt(0, 0, Time())
RETURN

The result of all three examples is identical: the time is displayed once a second in the upper
left corner of the screen (the unit for the time interval is 1/100ths of a second). The easiest
implementation is given by the SetTimerEvent() function which repeatedly evaluates a code
block.

A comparison of the procedures ShowTime_A() and ShowTime_B() reveals an important
implication which results from using the method :setInterval(). Example #2 uses a DO
WHILE loop and an explicit wait state (function Sleep()) for continuous display, while
example #3 works continuously without a DO WHILE loop. In example #3, a time interval
which is monitored by the Thread object is defined. Therefore, the procedure ShowTime_B()
is executed each time the interval elapses, and the thread implicitly enters a wait state in
between two execution cycles.

Alaska Xbase* * Basic Users Guide 147

(De)Initialization routines for Threads

13.2.6. (De)Initialization routines for Threads

The program code invoked in a thread by calling the :start() method can be differentiated in
greater detail by additional (de)initialization routines which are executed once at the
beginning of a thread and once before it terminates. The instance variables :atStart and
:atEnd of a Thread object serve this particular purpose. Both can be assigned names of
functions or code blocks:

oThread:atStart := {|| DbUseArea(.T., , "CUSTOMER") }
oThread:atEnd := {|| DbCloseArea() }

oThread:setInterval (0)

oThread:start ("CustomerList", {|| FIELD->CITY = "New York" })

<other program code which runs parallel>

PROCEDURE CustomerList(bForCondition)
IF Eval(bForCondition)
QOut (FIELD->LASTNAME)
ENDIF

SKIP

IF Eof ()
ThreadObject () :setInterval(NIL)
ENDIF
RETURN

In this example, a database query which lists data of all customers living in New York is
programmed. The file is opened when the thread starts, i.e. before the query begins, and it is
closed before the thread terminates. This occurs in the :atStart and :atEnd code blocks. The
program code for the evaluation of the database is implemented without the typical DO
WHILE .NOT. Eof() loop. This becomes possible because the time interval for repeated
execution of this code is set to zero. As a result, the code is immediately started again
whenever the RETURN statement is reached. When the record pointer is moved to the end of
file (Eof() == .T.), the interval is set to NIL which causes the thread not to repeat the code

but to terminate.

13.2.7. User-defined Thread classes

The Thread class can serve as superclass for user-defined Thread classes whose instances
each have their own thread. Three methods are provided for use in derived Thread classes.
They have the PROTECTED: visibility attribute and can therefore be used in subclasses only.
These methods are :atStart(), :execute() and :atEnd(), of which at least the :execute() method
must be programmed in a user-defined Thread class. It contains the code to be executed in
the separate thread after the :start() method is called.

148

Alaska Xbase* * Basic Users Guide

User-defined Thread classes

The example for the database query in the previous section is used as basis for the following
Thread class which performs the same database operations:

oThread := CustomerList () :new()
oThread:start(, {|| FIELD->CITY = "New York" })

<other program code which runs parallels>

khkkkhkkhkkkhkhkhhhkhkkhkhkhkkkhkhkhhhdhkk

CLASS CustomerList FROM Thread
PROTECTED:
METHOD atStart, execute, atEnd
ENDCLASS

// Open database file when thread starts
METHOD CustomerList:atStart

USE CUSTOMER

::setInterval(0)
RETURN self

// Perform database query
METHOD CustomerList:execute(bForCondition)
IF Eval(bForCondition)
QOut (FIELD->LASTNAME)

ENDIF
SKIP

IF Eof ()
::setInterval(NIL)
ENDIF
RETURN self

// Close database file before thread terminates
METHOD CustomerList:atEnd

CLOSE CUSTOMER
RETURN self

The user-defined class is instantiated and a code block with the condition for the query is
passed to the :start() method. The three methods :atStart(), :atEnd() and :execute() are then
automatically invoked and executed within the thread. The code block passed to :start() is
also passed to the method :execute(). The code of this method is repeatedly executed until the
end of file is reached.

The example shows the methods which can or must be implemented in a user-defined Thread
class. It uses the mechanism for time-controlled repeated execution of code in a thread.
Instead of :setInterval(0 | NIL), a DO WHILE loop can be used as well.

Alaska Xbase' * Basic Users Guide 149

Controlling threads using wait states

13.2.8. Controlling threads using wait states

In multi-threaded programs, each thread can be viewed as a separate execution path in which
different parts of a program may be executed at the same time. It is also possible to run one
and the same part of a program simultaneously in multiple threads. A DO WHILE loop, for
example, can be programmed once but may be executed 10 times at the same time.
Therefore, all language elements which control program flow in one thread are not
appropriate for controlling the program flow between multiple threads. This applies to
statements like FOR..NEXT, DO WHILE..ENDDO, IF..ENDIF, DO CASE..ENDCASE or
BEGIN SEQUENCE..ENDSEQUENCE. All of these control structures are translated by the
compiler at compile time and are only valid for one thread.

The possibilities for coordinating different threads begin with halting the current thread until
one or more other threads have terminated. The functions ThreadWait(), ThreadWaitAll()
and the method :synchronize() of the Thread class are used for this purpose. Whenever one of
these functions or the method is called, the current thread stops program execution and enters
a wait state. The thread waits for the end of one or more other threads and resumes
afterwards. While waiting, the thread consumes no CPU resoures. The following scheme
demonstrates this:

Thread A Thread B

running

|
oThreadB:start ()

| running

| | // simultaneous execution

I | // of program code
oThreadB:synchronize(0) |

| // thread B executes code
wait state I
RETURN // thread B terminates

running // thread A resumes

Thread A starts thread B and waits for its end at a particular point in the program by calling
the :synchronize() method. It is not possible to terminate thread B explicitly from thread A.

Normally, the coordination of threads via wait states is necessary if one thread A needs the
result of another thread B. For example, the calculation of extensive statistics can be done in
multiple threads where each thread collects data from a particular database and calculates just
one part of the statistic. The consolidation of the entire statistic then occurs in one single
thread which needs to wait for the results of all other threads. In this scenario, all threads
execute different parts of a program at the same time and must be coordinated or
synchronized at a particular point in the program. The coordination can be implemented by
one thread waiting for all others, or by one thread telling other threads to leave their wait
state. The latter possibility requires a Signal object for communication between threads.

150

Alaska Xbase* * Basic Users Guide

Controlling threads using signals

13.2.9. Controlling threads using signals

There is a possibility for coordinating threads which does not require a thread to terminate
before another thread resumes. However, this requires the usage of an object of the Signal
class. The Signal object must be visible in two threads at the same time. With the aid of a
Signal object, one thread can tell one or more other threads to leave their wait state and to
resume program execution:

Thread A Thread B

running running // simultaneous execution

| | // of program code

| oSignal:wait() // thread B stops

|

| wait state // thread A executes code
oSignal:signal()

| running // thread B resumes

| |

Whenever a thread executes the :wait() method of a Signal object, it enters a wait state and
stops program execution. The thread leaves its wait state only after another thread calls the
:signal() method of the same Signal object. In this way a communication between threads is
realized. One thread tells other threads to leave their wait state and to resume program
execution.

13.2.10. Mutual exclusion of threads

As long as multiple threads execute different program code at the same time, the coordination
of threads is possible using wait states as achieved with :synchronize() or ThreadWait().
However, wait states are not possible if the same program code is running simultaneously in
multiple threads. A common example for this situation is adding/deleting elements to/from a
globally visible array:

PUBLIC aQueue := {}

FOR i:=1 TO 10000 // This loop cannot
Add("Test") // be executed in
Del() // multiple threads

NEXT

khkhkkkkhkkkkhkhkAA XAk kA kkk

FUNCTION Add(xValue)
RETURN AAdd(aQueue, xValue)

* Kk k ok ok kk ok ok ok ok okokok

FUNCTION Del ()
LOCAL xValue

IF Len(aQueue) > 1

Alaska Xbase* * Basic Users Guide 151

Mutual exclusion of threads

xValue := aQueuell]
ADel (aQueue, 1)
ASize(aQueue, Len(aQueue)-1)
ENDIF
RETURN xValue

In this example, the array aQueue is used to temporarily store arbitrary values. The values are
retrieved from the array according to the FIFO principle (First In First Out). Function Add()
adds an element to the end of the array, while function Del() reads the first element and
shrinks the array by one element (note: this kind of data management is called a Queue).

When the functions Add() and Del() are executed in different threads, the PUBLIC array
aQueue is accessed simultaneously by multiple threads. This leads to a critical situation in
function Del() when the array has only one element. In this case, a runtime error can occur:

Thread A Thread B

LOCAL xValue
IF Len(aQueue) > 1

Thread is Thread executes function completely
interrupted by the
operating system LOCAL xValue
IF Len(aQueue) > 1
xValue := aQueuell]

ADel (aQueue, 1)
ASize(aQueue, Len(aQueue)-1)
ENDIF
RETURN xValue
Thread resumes

xValue := aQueue[l]

Runtime error:
Meanwhile, the array is empty

The operating system can interrupt a thread at any time in order to give another thread access
to the CPU. If threads A and B execute function Del() at the same time, it is possible that
thread A is interrupted immediately after the IF statement. Thread B may then run the
function to completion before thread A is scheduled again for program execution. In this
case, a runtime error can occur because the function Del() is not completely executed in one
thread before another thread executes the same function.

The example function Del() represents those situations in multi-threading which require
muliple operations to be executed in one particular thread before another thread may execute
the same operations. This can be resolved when thread B is stopped while thread A executes
the Del() function. Only after thread A has run this function to completion may thread B
begin with executing the same function. Such a situation is called "mutual exclusion" because
one thread excludes all other threads from executing the same code at the same time.

Alaska Xbase* * Basic Users Guide

Controlling threads using signals

Mutual exclusion of threads is achieved in Xbase** not on the PROCEDURE/FUNCTION
level but with the aid of SYNC methods. The SYNC attribute for methods guarantees that the
method code is executed by only one thread at any time. However, this is restricted to one
and the same object. If one object is visible in multiple threads and the method is called
simultaneously with that object, the execution of the method is serialized between the threads.
In contrast, if two objects of the same class are used in two thrcads and the same method is
called with both objects, the program code of the method runs parallel in both threads. As a
result, mutual exclusion is only possible if two threads attempt to execute the same method
with the same object. The object must be an instance of a user-defined class that implements
SYNC methods. A SYNC method is executed entirely in one thread. All other threads are
automatically stopped when they attempt to execute the same method with the same object.

The example with the beforementioned PUBLIC array aQueue must be programmed as a
user-defined class in order to safely access the array from multiple threads:

PUBLIC oQueue := Queue() :new()

FOR i:=1 TO 10000 // This loop can run
oQueue:add("Test") // simultaneously in
oQueue:del () // multiple threads

NEXT

AkkkKkkkkkkkk

CLASS Queue // Class for managing
PROTECTED: // a queue
VAR aQueue
EXPORTED:

INLINE METHOD init
::aQueue := {} // Initialize array

RETURN self

SYNC METHOD add, del // Synchronized methods
ENDCLASS
METHOD Queue:add(xValue) // Add an element

RETURN AAdd(::aQueue, xValue)

METHOD Queue:del // Remove first element
LOCAL xValue // and shrink array

IF Len(::aQueue) > 1

xValue := aQueue[l]

ADel (::aQueue, 1)

ASize(::aQueue, Len(::aQueue)-1)
ENDIF

RETURN xValue

Alaska Xbase* * Basic Users Guide 153

Mutual exclusion of threads

In this example, the Queue class is used for managing a dynamic array that may be accessed
and changed from multiple threads simultaneously. The array is referenced in the instance
variable :aQueue and it is accessed within the SYNC methods :add() and :del(). The Queue
object which contains the array is globally visible. The execution of the :del() method is
automatically serialized between multiple threads:

Thread A Thread B

\ |
oQueue:del () |

| oQueue:del ()

< o>
ADel (::aQueue, 1) thread is stopped
< o>
RETURN xValue thread resumes
I < .>
ADel (::aQueue, 1)

RETURN xValue
|

|
| <...>
|
|

When thread B wants to execute the :del() method while this method is executed by thread A,
thread B is stopped because it wants to execute the method with the same Queue object.
Therefore, SYNC methods are used whenever multiple operations must be guaranteed to be
executed in one thread before another thread executes the same operations. A SYNC method
can be executed with the same object only in one thread at any time (Note: if a class method
is declared with the SYNC attribute, its execution is serialized for all objects of the class).

Alaska Xbase ' * Basic Users Guide

User Interface and Dialog Concepts

14. User Interface and
Dialog Concepts

A large part of the program code for most applications is associated with the user interface
and allowing the user to access features of the application. The operating system offers two
operating modes for the user interface, the VIO mode (Video Input Output Mode) and GUI
mode (Graphic User Interface). The VIO mode is a text based operating mode which is
selected when the full screen mode is active or when a DOS program is running in a DOS
window. The GUI mode is a graphic operating mode. An example of the GUI mode is the
desktop. Xbase** supports both operating modes which makes it possible to easily port
existing Xbase programs written for DOS to a 32bit operating system.

To simplify migration of existing DOS Xbase programs from the text based VIO mode to the
GUI mode, Xbase* also includes a special "hybrid" mode. In this mode, character based
program elements can be mixed with graphic dialog elements. This allows the programmer to
transition existing text based DOS Xbase programs in a stepwise manner to applications with
a full graphic user interface.

This chapter describes how programs can be created for the different operating modes and
illustrates various concepts for programming user interfaces. This includes aspects of data
input and output for both the procedural programming of VIO applications and the event
driven, object oriented programming of GUI applications.

14.1. Applications in character mode
(VIO mode)

This section describes the most important commands, functions, and dialog concepts used in
programming VIO applications. With only a few exceptions, all relevant language elements
of Xbase** are compatible with Clipper. Programmers familiar with Clipper can just read the
"Keyboard and mouse" and "The default Get system" sections of this chapter. Note that the
functionality of a VIO application is guaranteed in hybrid mode as well as in GUI mode.

14.1.1.Unformatted input and output

The simplest form of data input and output is unformatted. Data is input or output at the
current position of the screen cursor or print head. Xbase** provides a set of commands for
unformatted input and output. These are listed in the following table:

Alaska Xbase' * Basic Users Guide 155

Unformatted input and output

Commands for unformatted input and output

Command Description

717 Output the result of one or more expressions
ACCEPT Input characters at the current cursor position
DISPLAY Output the contents of a database file

INPUT Input an expression at the current cursor position
LIST Output the contents of a database file

SET ALTERNATE Turn output to a file on or off

SET COLOR Set the screen color

SET CONSOLE Turn screen output on or off

SET PRINTER Turn printer output on or off
TEXT..ENDTEXT Output one or more lines of text

TYPE Output the contents of any file

WAIT Input a single character

The three commands ACCEPT, INPUT and WAIT provide unformatted input. WAIT
accepts a single keystroke while ACCEPT and INPUT allow any number of characters to be
entered. Input via ACCEPT and INPUT is ended when the user presses the Enter key.
Characters entered using INPUT are considered as an expression and are compiled using the
macro operator (an error in the expression leads to a runtime error). Characters entered using
the ACCEPT command remain unchanged and can be assigned to a memory variable as a
character string.

The most commonly used commands for unformatted output are the single and the double
question marks (? or ??). These are equivalent to the functions QOut() and QQOut(),
respectively. The results of one or more expressions can be output using these commands.
The default output device is the screen. The results of the expressions can also be saved in a
file (after SET ALTERNATE ON) or sent to a printer (after SET PRINTER ON). If the
command SET CONSOLE OFF is called before output, screen output is suppressed. After
screen output has been suppressed, the screen output must be reactivated using SET
CONSOLE ON after output to the file and/or printer is complete.

The commands LIST and DISPLAY are both used to output records from a database file. The
command TYPE outputs the contents of any text file. The options TO PRINTER and TO
FILE are valid with all three of these commands, so simultaneous output to a printer or a file
can be performed without calling SET PRINTER ON or SET ALTERNATE ON. The screen
output of these commands can be suppressed by first calling SET CONSOLE OFF.

The command SET COLOR changes the color for the display of screen output. The
command is not really an output command, but allows the color of the output to be modified.

Alaska Xbase " - Basic Users Guide

Formatted input and output

Detailed descriptions of the commands for unformatted input and output, including program
examples, are found in the reference documentation.

14.1.2. Formatted input and output

Formatted input and output allows the exact position on the screen or printer (the row and
column) for data input or output to be specified. Xbase** includes commands and functions
for formatted input and output. The commands are translated by the preprocessor to the
equivalent function, which means that the difference between commands and functions is just
a difference in syntax. The command syntax sometimes allow more readable program code,
since many commands imply several function calls and the command syntax provides
additional keywords. The following table lists the most important functions and commands
for formatted input and output:

Commands and functions for formatted input and output

Command/function Description

@ Position screen cursor and delete screen line
@..BOX Output box on the screen

@..CLEAR Delete screen area

@..GET Input data

@..SAY Output data

@..TO Output box on the screen

CLEAR Delete entire screen

Col() Return column position of screen cursor

DispOut() Output the result of an expression, and update cursor position
DispOutAt() Like DispOut() but cursor position not updated
DevOut() Output expression results on the current output device
Row() Return row position of screen cursor

MaxCol() Return maximum number of columns on the screen
MaxRow() Return maximum number of rows on the screen
PCol() Return current column position of the print head
PRow() Return current row position of the print head
SaveScreen() Save screen area

SET DEVICE Specify current output device

SetColor() Set or return screen color

SetPos() Change screen cursor position

SetPrc() Set row and column coordinates of the print head
RestScreen() Redisplay a saved screen area

Some of these functions and commands affect only the position of the screen cursor but are
included because the cursor coordinates mark the position where data is displayed. Other
functions and commands manage the screen itself. In VIO mode, the origin (0, 0) of the
coordinate system is the upper left corner of the screen or window. The lower right corner

Alaska Xbase* * Basic Users Guide 157

Keyboard and mouse

(MaxRow(), MaxCol()) represents the largest coordinate values that are visible. The position
of the cursor is set by specifying the Row() and Col() to either the command @ or the
function SetPos(). The screen is generally cleared using CLEAR at the start of each program
prior to displaying anything for the first time. The commands @...BOX and @...TO draw
boxes on the screen. They are only valid for the screen and are not available for the printer.

The most important command for formatted output is @...SAY which outputs the result of an
expression. Output using @...SAY can occur on the screen or on the printer. Formatted
output differs from unformatted output in that simultaneous output on the screen and printer
is not possible. Selecting an output device is done using the command SET DEVICE (TO
PRINTER or TO SCREEN). Output on the printer is at the current position of the print head
which can be set using the functions PRow() and PCol(). The function SetPrc() resets the
internal values for the row and column coordinates of the print head but does not reposition
the print head.

The command @...SAY can be expanded to include data input using the GET option.
Alternatively, an input field can be defined using the command @...GET. These commands
are used to define one or more data entry fields prior to the actual data input which occurs
within the READ command or the function ReadModal(). READ and ReadModal() both
activate the default Get system of Xbase** (see the later section on this).

14.1.3. Keyboard and mouse

Under an operating system with graphic user interface, the mouse (not the keyboard) is the
most important input device for controlling the application. Because of this, running
programs or individual modules is not controlled by program logic but by "events". These
events are usually caused by actions of the user. Events, which come from outside the
application, are temporarily stored by the operating system in an event queue and then
sequentially processed by the application. Some examples of events would be: the mouse was
moved, the right mouse button was clicked, the left mouse button was double clicked, etc.

A keypress is also an event, which shows that events can come from various devices.

Each event is identified within the program by a numeric code. Each key has an associated
unique numeric value and different mouse events have different numeric codes. In Xbase*,
events are all handled by a group of event functions, regardless of their origin. There is also a
group of functions which assure language compatibility with Clipper. These compatibility
functions can only respond to the keyboard and they only consider the keyboard codes
defined in Clipper. It should be noted that the numeric values associated with the various
keys in Clipper do not necessarily match the event codes of the operating system or Xbase**
and the old keycodes are offered only for compatibility.

A correlation is found between key codes and ASCII characters only in the range of O to 255.
These compatibility functions only consider the key codes defined in Clipper. The distinction
between "event functions” and "keyboard functions" is also shown in the following table:

158

Alaska Xbase "+ Basic Users Guide

Keyboard and mouse

Event functions and keyboard functions

Function Description

Event functions supporting both keyboard and mouse input

AppEvent() Read event and remove it from the queue
LastAppEvent() Return the last event

NextAppEvent() Read next event without removing it from queue
PostAppEvent() Put event into the queue

SetAppEvent() Associate event with a code block

SetMouse() Toggle availability of mouse events on or off

Compatibility functions supporting only keyboard input

Inkey() Read key code

KEYBOARD Write characters into keyboard buffer *)
LastKey() Return last key code

NextKey() Read next key code

SetKey() Associate key code with a code block

*) KEYBOARD is a command, not a function

A detailed description of the compatibility functions can be found in the reference
documentation.

AppEvent() reads events from the queue and also removes them from the queue. The return
value of AppEvent() is the numeric code that uniquely identifies the event. The function
SetMouse(.T.) must have been previously called for the AppEvent() function to register
mouse events in VIO mode. The following program example is terminated when the right
mouse button is pressed:

#include "Appevent.ch"

PROCEDURE Main

LOCAL nEvent := 0

CLEAR

@ 0,0 SAY "Press right mouse button to terminate"

SetMouse(.T.) // register mouse events

DO WHILE nEvent <> xbeM_RbDown // event: right mouse button
nEvent := AppEvent(,,,0) // wait until event occurs
IF nEvent < xbeB_Event // event: keypress

? "The event code for the key is:", nEvent

ELSE

Alaska Xbase* * Basic Users Guide 159

Keyboard and mouse

? "The event code for the mouse is:" , nEvent
ENDIF
ENDDO

RETURN

The large number of possible events makes it impractical to directly program events using the
numeric codes. Instead, the constants defined in the #include file APPEVENT.CH should be
used. These constants all begin with the prefix xbe (which stands for xbase event) followed
by an uppercase letter or an underscore. The uppercase letter identifies the category for the
event and the underscore separates the prefix from the rest of the descriptive event name:

Event categories

Category Prefix Example

No event xbe_ xbe_None
Keyboard event xbeK_ xbeK_RETURN
Base event xbeB_ xbeB_Event
Mouse event xbeM_ xbeM_LbDown
Xbase Part event xbeP_ xbeP_Activate

In addition to the return value identifying the event, the function AppEvent() modifies two
parameters that are passed by reference. These are called "message parameters" and contain
additional information about the event. In an event driven system such as Xbase*, it is often
insufficient to receive only a single event code. For example, it is generally necessary to
know the position of the mouse pointer if the event is "mouse click”. When the function
AppEvent() is called, two parameters must be passed by reference to contain additional
information about the event after AppEvent() returns. If the event is a mouse click, the
coordinates of the mouse pointer are contained in the first message parameter as an array of
two elements. The following example illustrates this:

#include "Appevent.ch"

PROCEDURE Main

LOCAL nEvent := 0, mpl, nRow, nCol
CLEAR
@ 0,0 SAY "Press right mouse button to cancel"
SetMouse(.T.) // register mouse event
DO WHILE nEvent <> xbeM_RbDown // event: right mouse button

nEvent :- AppEvent (€@mpl,,,0) // wait until event

// occurs
IF nEvent < xbeB_Event // event: keypress
? "Event code:", nEvent
ELSEIF nEvent <> xbeM_Motion // mouse events exept

160 Alaska Xbase * Basic Users Guide

Keyboard and mouse

// ‘'mouse moved'
nRow := mpl[1l] // mouse coordinates
nCol := mpl[2]

@ nRow, nCol SAY "The event code is:" + Str(nEvent)
ENDIF
ENDDO

RETURN

The variable mp1 is passed by reference to the function AppEvent(). After each mouse event
it contains the row and column coordinates of the mouse pointer in an array of two elements.
In the example, the contents of the array are assigned to the two variables nRow and nCol.
The event code is output at this position, unless it is a mouse movement. The xbeM_Motion
event occurs very frequently during mouse movement and would clutter the screen if
displayed.

In VIO mode, the mouse coordinates are the most important information contained in the
message parameters. In many other cases the parameters contain the value NIL in this
operating mode but contain additional information when Xbase Parts are used (of course,
Xbase Parts are not available in VIO mode) or when user-defined events are created using the
function PostAppEvent(). The following example illustrates the basic relationship between
the functions AppEvent() and PostAppEvent() which (along with their message parameters)
create the basis for event driven programming:

#include "Appevent.ch"

#define xbeU_DrawBox xbeP_User + 1 // xbeP_User is the base value
#define xbeU_Quit xbeP_User + 2 // for User events

PROCEDURE Main

LOCAL nEvent := 0, mpl, mp2

CLEAR

@ 0,0 SAY " Draw Box | QUIT" // mouse sensitive region
SetMouse(.T.) // register mouse

DO WHILE .T. // infinite event loop

nEvent := AppEvent(€@mpl, €Gmp2 ,,0)

DO CASE
CASE nEvent == xbeU_DrawBox // user event
DrawBox (mpl, mp2) // mpl = Date(), mp2 = Time()
// from PostAppEvent ()
CASE nEvent == xbeU_Quit // second user event
QUIT
CASE nEvent < xbeB_Event // key was pressed
@ MaxRow(), O

Alaska Xbase' ' Basic Users Guide 161

Keyboard and mouse

?? "Key code is:", nEvent
CASE nEvent == xbeM_LbClick // left mouse button click
@ MaxRow(), O
?? "Coordinates are:", mpl([l], mpl[2]
IF mpl[l]== 0 .AND. mpl[2] <= 21 // in mouse sensitive

// region
IF mpl[2] <= 15

PostAppEvent (xbeU_DrawBox, Date(), Time())
ELSE
PostAppEvent (xbeU_Quit)
ENDIF
ELSE
@ mpl(l], mpl[2] SAY "No selection made"
ENDIF
ENDCASE
ENDDO
RETURN
khkhkhkhkhkdhhkdhhkdhhkhkhkdhAhdhkdkdhkhkdhhkkdk // define position and dlsplay
PROCEDURE DrawBox (dDate, cTime) // box using mouse clicks
LOCAL nEvent := 0, mpl, nTop, nLeft, nBottom, nRight

SAVE SCREEN
@ 0, 0 SAY "Click on upper left corner of box"

DO WHILE nEvent <> xbeM LbClick // wait for left mouse click
nEvent :- AppEvent(@mpl,,, 0)

ENDDO

nTop := mpl[1l]

nLeft := mpl([2]

nEvent := 0
@ nTop, nLeft SAY "Click on lower right corner of box"

DO WHILE nEvent <> xbeM LbClick // wait for left mouse click
nEvent :- AppEvent(€mpl,,, 0)
IF nEvent -- xbeM_LbClick .AND. ;
(mpl[l] <= nTop .OR. mpl[2] <= nLeft)
Tone(1000,1) // lower right corner
nEvent := 0 // 1s invalid
ENDIF
ENDDO

162

Alaska Xbase " + Basic Users Guide

The default Get system

nBottom mpl([1]
nRight := mpl([2]

"

RESTORE SCREEN

@ nTop, nLeft TO nBottom, nRight // output box
@ nTop+l,nLeft+1l SAY "Date:" // display values of
?? dDate // PostAppEvent ()
@ nTop+2,nLeft+1l SAY " Time:"
?? cTime
RETURN

In the example, one of the two user-defined events is generated when the mouse is clicked in
the hot spot region of the first screen row. The mouse coordinates (contained in the message
parameter mp1) are used to distinguish whether the xbeU_DrawBox event or the xbeU_Quit
event is placed in the queue by PostAppEvent(). The user-defined event xbeU_DrawBox
receives the return values of Date() and Time() as message parameters. When this event is
retrieved from the queue by AppEvent(), the message parameters are placed in the variables
mpl and mp2. These values are passed to the procedure DrawBox() and displayed on the
screen by this function.

The program is a simple example showing the logic of event driven programming. Events are
identified by a unique numeric value (using a #define constant) and additional information
about the event is contained in the two message parameters. The values contained in the two
parameters mpl and mp2 vary depending on the event. The message parameter values can
range from NIL in the simplest case to complex data structures such as arrays or objects.
PostAppEvent() can be used to place any event in the queue that can then be retrieved from
any place in the program using AppEvent().

14.1.4. The default Get system

Xbase* provides a Get system for formatted data input in VIO mode. The source code of this
system is contained in the GETSYS.PRG file. The open architecture of the Get system offers
tremendous possibilities such as data validation before, during and after data entry. It also
offers a specific place where a programmer can identify and process events that occur during
data input without having to change the basic language elements for defining input fields.

An input field is most easily created using the command @...SAY...GET. The data entry
itself is started using the command READ:

USE Address ALIAS Addr

@ 10,10 SAY "First Name:" GET Addr->FIRSTNAME // define data
@ 12,10 SAY " Last Name:" GET Addr->LASTNAME // entry fields

// read input
READ

Alaska Xbase** Basic Users Guide 163

The default Get system

In these four lines a database file is opened, two data entry fields are defined and input is
performed via the READ command. Input is terminated when the entry in the second field is
finished using the Return key or if the Esc key is pressed during input.

The command syntax is the easiest way to program data entry fields. This syntax is translated
by the preprocessor into code that creates Get objects and stores them in the GetList array.
Get objects include methods that allow the formatted display of values and interactive data
entry. The data entry values can be contained in memory variables or in field variables.
Access to the contents of data entry variables does not occur directly, but through a code
block. This code block is called the data code block. The data code block is used by the Get
object to read the value of a variable into the Get object's edit buffer and then to write the
modified value back into the variable.

When a Get object has input focus, the user can modify the contents of the edit buffer. A Get
object uses various methods to control cursor navigation and transfer characters into the edit
buffer. Get objects can also perform data validation before and after data input. Rules for

data validation are specified in code blocks contained in instance variables of the Get object.

The command @...GET creates a Get object that already contain a code block to access the
specified variable. When Get objects are created directly using the class method Get():new(),
a data code block must be specified. Get objects are stored in an array that is passed to the
function ReadModal(). If the @...GET command is used, the array referencing the Get
objects is contained in the variable GetList. The READ command passes the GetList array to
the function ReadModal(). The ReadModal() function is the default edit routine which
accesses various edit and display methods of the Get objects. The default Xbase* Get system
includes the ReadModal() function along with the other globally visible utility routines listed
in the following table:

Functions of the Get system

Function Description

READ Service routines

ReadModal() Activates data input for all Get objects
ReadExit() Defines termination keys for data entry fields
ReadInsert() Toggles between insert and overwrite mode
ReadKill() Terminates data input for all Get objects in

the current GetList array

GET Service routines

GetEventReader() Get Reader for AppEvent()

GetHandleEvent() Allows event processing by current Get object
GetPrevalidate() Prevalidates before a Get object receives focus
GetPostvalidate() Postvalidates before a Get object loses focus

164

Alaska Xbase* * Basic Users Guide

Modification of the Get system

Function Description
GetDoSetkey() Executes code block which is linked to a key
or an event
GetActive() Sets the Get object that has the focus
GetKillActive() Removes focus from the active Get object
Getlist() Determines current GetList array
GetlistPos() Returns position of current Get object in the
GetList array
GetEnableEvents() Toggles between Inkey() and AppEvent()
GetToMousePos() Positions cursor in entry ficld at the mouse pointer

Compatibility functions supporting only keyboard entry

GetReader() Get reader for Inkey()
GetApplykey() Allows keys to be processed by the current Get object

Two of the functions in the GETSYS.PRG file exist in order to ensure compatibility with the
Clipper Get system. In these functions, the compatibility function Inkey() is used to retrieve
keyboard entry. This is not compatible with the AppEvent() function which is used to read
Xbase* events. To make it easier to port existing Clipper applications to Xbase**, the
compatibility functions are used by default in VIO mode. This means that the Get system
reads only the keyboard using Inkey() and does not process any events. In this defauit mode,
the Get system is completely compatible with Clipper but the mouse is not available.

The default setting is switched when SetMouse(.T.) is called before the first READ command
or the first call to ReadModal(). Events in the Get system are then processed using the
functions GetEventReader() and GetHandleEvent() instead of the functions GetReader() and
GetApplykey(). In this setting the mouse is available. The function SetAppEvent() must be
used instead of SetKey() to associate keystrokes with code blocks. The function
GetEnableEvents(.T. | .F.) can also be used to switch between the compatibility mode and
the event driven mode of the Xbase* Get system.

The service functions of the Get system are rarely needed. The @...SAY...GET command is
sufficient to allow complex data entry screens to be easily programmed. A detailed
knowledge of the additional Get system functions is required when the default Get system is
modified to meet unique requirements.

14.1.5. Madification of the Get system

The source code of the Xbase** Get system is contained in the file GETSYS.PRG and can be
modified in just about any way. Changes should not be performed in the file itself but in a
copy of the file. Before substantial changes to GETSYS.PRG are performed, other ways to
modify the default behavior to meet individual requirements should be explored. For
example, the instance variable oGet:reader contains a code block that calls a user-defined

Alaska Xbase* * Basic Users Guide 165

Modification of the Get system

Get reader that can be used to provide special features. The Get reader code block must
accept one parameter (the Get object) which must be passed as the first parameter to the
function or procedure that implements the Get reader. The basic approach to implementing a
special Get reader is shown in the following example. This code uses the compatibility
function Inkey() to read keyboard input. The purpose of the example reader is to handle
German language umlauts and "B" entered as characters in the entry field. These characters
are translated into their two character equivalents in the user-defined reader NoUmlauts() :

#include "Get.ch"

* ok ok ok kkk ok ok ok ok ok ok ok

PROCEDURE Main
LOCAL cNamel := Space(20), cName2 := Space(20)

@ 8,10 SAY "Input without umlauts and R"

@ 10,10 SAY "First Name:" GET cNamel ; // define Get Reader
SEND reader := {|oGet| NoUmlauts(oGet) }
@ 12,10 SAY " Last Name:" GET cName2 ;
SEND reader := {|oGet| NoUmlauts(oGet) }
READ
RETURN

The definition of these input fields occurred using the command syntax. The code block
which assigns the user-defined Get reader is specified using the SEND option. In it the reader
code block is assigned to the instance variable oGet:reader. The Get reader itself is
programmed in the following procedure:

khkhkkhkhkkhkhkkhkhkkhkkkhkkdkkkhkkkkkk

PROCEDURE NoUmlauts(oGet)
LOCAL bBlock, cChar, nKey

IF GetPrevValidate(oGet) // perform prevalidation
oGet :setFocus () // set input focus to Get
bBlock := {lo,nl,n2| ; // translate within the code

GetApplykey (o,nl), ; // block into two characters
IIf(o:typeOut, NIL, GetApplykey(o,n2)) }

DO WHILE oGet:exitState == GE_NOEXIT

IF oGet:typeOut // no editable characters
oGet:exitState := GE_ENTER // right of the cursor
ENDIF

DO WHILE oGet:exitState == GE_NOEXIT

166 Alaska Xbase - - Basic Users Guide

Madification of the Get system

nKey :
cChar:

DO CASE
CASE cChar == "A"

Eval(bBlock, oGet, Asc("A"), Asc("e"))
CASE cChar == "O"

Eval(bBlock, oGet, Asc("O"), Asc("e"))
CASE cChar == "O"

Eval(bBlock, oGet, Asc("U"), Asc("e"))
CASE cChar == "&"

Eval(bBlock, oGet, Asc{("a"), Asc("e"))
CASE cChar == "o"

Eval(bBlock, oGet, Asc("o"), Asc("e"))
CASE cChar == "i" '

Eval(bBlock, oGet, Asc("u"), Asc("e"))
CASE cChar == "R"

Eval(bBlock, oGet, Asc("s"), Asc("s"))
OTHERWISE

GetApplykey(oGet, nKey)
ENDCASE

ENDDO

Inkey (0) // read keyboard
Chr (nKey)

// translate special characters

IF | GelPoslValidale{ oGelL)
oCet:exitState:= GE_NOEXIT // postvalidation

ENDIF // has failed
ENDDO
oGet :killFocus() // set back input focus
ENDIF
RETURN

Within the user-defined Get reader NoUmlauts(), keys are read using Inkey(). The keyboard
input is then tested to see if it includes one of the German language characters A, O, U, 4, 6,
i and B. If one of these characters is present, it is translated to the two equivalent characters
Ae, Oe, Ue, ae, oe, ue, or ss. All other characters are passed along with the Get object to the
function GetApplykey() which defines the default behavior for transferring characters into the
edit buffer of Get objects.

In order to modify this Get reader to use the function AppEvent() for reading events (instead
of just keystrokes), additional variables must be declared for the message parameters passed
by reference to AppEvent(). Instead of GetApplykey(), the function GetHandleEvent() must
be used for default handling of other events.

Alaska Xbase* * Basic Users Guide

167

Display of tables

14.1.6. Display of tables

Along with formatted data input using @...SAY...GET with READ or using Get objects with
ReadModal(), displaying an entire table is an important and frequently used interface feature.
A table allows the user to interactively view large amounts of data. Data in a table is
organized into rows and columns. This data can be from a database file open in a work area
or from an array stored in memory. The TBrowse class and the TBColumn class are included
in Xbase** to allow tables to be displayed. These classes are used together but each performs
a specific set of tasks when displaying tables. Table display is possible only through the
combined efforts of objects of both classes. A TBrowse object performs the screen display
and controls the current row and column of a table. A TBColumn object provides the data for
a column of the table displayed by the Tbrowse object. TBColumn objects must be assigned
to the TBrowse object and are used by the TBrowse object when a user views a table.

The TBrowse and TBColumn classes are associated with a set of functions that exist in
Xbase** only to provide compatibility with Clipper. The source code for the compatibility
functions listed in the following table are contained in the files DBEDIT.PRG,
BROWSYS.PRG and BROWUTIL.PRG.

Functions for the display of tables and database files

Function Description

Class functions:

TBrowse() Return class object of the TBrowse class

TBColumn() Return class object of the TBcolumn class
Compatibility:

Browse() Browse database file, including DELETE and APPEND
DbEdit() Browse database file with UDF control

TBrowseNew() Create TBrowse object

TBrowseDb() Create TBrowse object for database file
TBColumnNew() Create TBColumn object

TBrowse objects provide a versatile mechanism for displaying data in the form of a table.
TBrowse objects display tabular data in a defined section of the screen (the browse window).

Tables are often too large to be entirely displayed on the screen. TBrowse objects provide
methods that allow tables to be viewed interactively on the screen. The TBrowse class is
designed so that an object of this class does not know anything about the data source it
displays. To display data, a TBrowse object relies on one or more objects of the TBColumn
class to provide the data for individual columns in the table. A TBrowse object displays the
data provided by the TBColumn objects on the screen. Each TBColumn object deals with
only one column of the associated table. The TBrowse object manages its own cell cursor and

168

Alaska Xbase -+ Basic Users Guide

Display of tables

displays the data in the current row and column of a table (the current cell) in a highlighted
color.

A user can position the cell cursor in the table using the cursor keys. A TBrowse object
includes many methods which move the cell cursor. As soon as the user tries to move the cell
cursor out of the Browse window, the TBrowse object automatically synchronizes the visible
data on the screen with the data of the underlying table and scrolls the data in the browse
window.

Since the data source of the table is not known to the TBrowse object, three functions must
be specified to execute the three basic operations that can be performed on a table: jump to
the start of the table, jump to the end of the table and change the current row within the table.
These operations are comparable to the file commands GO TOP, GO BOTTOM and SKIP.
These functions are provided to TBrowse objects as code blocks that are automatically
executed within specific methods of the TBrowse object.

The browse window where the TBrowse object displays tabular data can be divided into
three areas: headers or column titles, data lines containing the data, and footers at the bottom
of each column. Each area, as well as each individual column, can be optionally delimited by
a separating line.

In contrast to TBrowse objects, TBColumn objects are very simple objects that contain
instance variables but do not have their own methods. TBColumn objects are needed to
provide data for tables displayed using TBrowse objects and are useless without an
associated TBrowse object. A TBColumn object contains in its instance variable all of the
information required for displaying a single column of a table in the browse window of the
TBrowse object.

The most important TBColumn instance variable (:block) contains a data code block that
provides the data from the data source for a column of data. This code block might access a
field variable in a work area, or a column in an array. TBColumn objects can also control the
color of the data displayed based on its value.

If new values are assigned to the instance variables of a TBColumn object after the TBrowse
object has already displayed data using the TBColumn object, the method
oTBrowse:configure() must be executed to update the columns in the browse window (see
TBrowse class).

Alaska Xbase* * Basic Users Guide 169

Applications in graphics mode (GUI mode)

14.2. Applications in graphics mode (GUI mode)

This section describes the concepts that are important when programming with Xbase Parts
and developing GUI applications. It starts with an overview of Xbase Parts and how events
are processed by code blocks or callback methods. The XbpCrt() and XbpDialog() classes
that provide objects for managing the application window of an Xbase** program are then
detailed. XbpCrt windows are suitable for porting existing DOS programs to a graphic user
interface and allow simultaneous text based and graphic output. These windows are used in
hybrid applications that transition existing DOS programs to GUI applications in a series of
steps. Only graphic output can occur in XbpDialog windows which are thus used only in GUI
applications.

14.2.1. Basics of Xbase Parts

Programming graphical user interfaces for applications is easily performed using the Xbase**
object model and system resources available on the Xbase** language level. Through its
"Xbase Parts" (XBPs), Xbase* offers ways for the programmer still thinking in procedural
terms to create programs with graphical user interfaces. Xbase Parts provide graphic dialog
elements, like pushbuttons and checkboxes, that can be integrated into character based
applications as well as into pure graphic applications. All Xbase Parts are based on operating
system resources and fit into the event driven design of the operating system. In order to use
Xbase Parts the program must be linked for GUI mode. All Xbase Parts use the same basic
mechanisms which are described in this section.

What are Xbase Parts?

XBPs are objects that provide the complex mechanisms of the operating system on the
Xbase* language level. A distinction can be made between Xbase Parts (XBPs) designed for
screen interaction with the user and those that are used only for graphic output or are not
visible. The second group of XBPs is described in the chapter "The Xbase** Graphics Engine
(GRA)" and is not discussed in this chapter. The XBPs for user interaction each provide a
single dialog element as a graphic component. For this reason, XBPs can only be used in a
program that is linked for the GUI mode. In Xbase**, there are Xbase Parts for windows,
pushbuttons, checkboxes, data entry fields, etc., as well as standard dialogs for such tasks as
selecting fonts or files.

The life cycle of Xbase-Parts

All XBPs are subject to what is called the "life cycle”, which distinguishes them from other
objects like TBrowse objects or Thread objects. All objects, including XBP objects are
created from their class object using the method :new(). However, if the object is an XBP
object it is not yet capable of doing anything except requesting system resources from the
operating system. This is done using the method :create(). An XBP is operational only after
execution of the :create() method. The following program code is an example of this process

170

Alaska Xbase* * Basic Users Guide

Basics of Xbase Parts

for a pushbutton:

// create object for XBP and specify coordinates
oButton := XbpPushButton():new(, , {10,20}, {80,30})

// define variables for configuring system resources: in this
// case the text which is displayed on the pushbutton
oButton:caption := " Delete "

// request system resource
oButton:create()

These lines show the basic process for creating an operational XBP. The object is first
created using the class method :new(). Then values are assigned to the instance variables used
to configure the system resource, and finally :create() is used to request the system resource
from the operating system (in this case, a pushbutton). It is important to distinguish between
:new() and :create(). Both methods must be called to generate an operational Xbase Part. The
:new() method generates the object and the :create() method requests system resources. Most
XBPs use instance variables only to configure the system resource. Assigning values to
instance variables used for configuration must occur before the :create() method is called.

The system resource can be reconfigured after an XBP is created and has requested the
system resource from the operating system. If new values are assigned to the instance
variables used for configuration of the system rcsource, the method :configure() must be
called to implement the changes. The following shows an example:

// reconfigure a loaded system resource
oButton:caption := " Recall "
oButton:configure()

The text (or caption) displayed on the pushbutton is part of the "pushbutton"” system resource.
In order to change it, the system resource must be reconfigured. The XBP method
:configure() is used to accomplish this (and is one of the "life cycle" methods of an XBP).

The last method in the "life cycle" of an XBP is :destroy(). This method releases the system
resources that were requested from the operating system by the method :create(). This
renders the XBP non-operational but it remains in existence and can request system resources
again. In other words, the method :destroy() has no influence on the object created using
:new(), but releases the system resources requested using :create().

Alaska Xbase* * Basic Users Guide 171

Applications in graphics mode (GUI mode)

The following diagram illustrates the "life cycle" of an Xbase Part and clarifies when each of
the methods are called:

] :new() create Xbase FPart
L.

— :create() «— request system resource
-~ :configure()] configure system resource
Ly ;destroy() —— release system resource

e}

The method :destroy() is generally not needed. However, it can be used to explicitly release
memory intensive system resources (for example, bitmaps). System resources are implicitly
released as soon as there are no further references to the Xbase Part object. In this case, an
Xbase Part is handled like any other memory variable and is removed from memory by the
garbage collector.

Important: As long as the :create() method has not been called an XBP is unable to execute
any other method (there are some rare exceptions which are explicitly outlined). Immediately
after the call to :new() it is only possible to assign values to instance variables which are used
to configure system resources. Only after the system resource has been retrieved from the
operating system using :create() an XBP is fully functional. Then it can execute all available
methods except :create(). This method can be called again only after a call to the :destroy()
method which releases system resources.

Xbase Parts and events

XBPs are seamlessly inserted into the message stream used to control a GUI application.
Messages identify the events that have taken place. Examples of events that a program would
receive are keyboard entry and mouse clicks. Events such as these are read using the function
AppEvent(), which returns a numeric event code (see "Keyboard and mouse" in the section
"Applications in character mode" of this chapter). The function AppEvent() plays a central
role in controlling the Xbase Parts that provide graphic dialog elements.

172

Alaska Xbase* * Basic Users Guide

Basics of Xbase Parts

The following program code shows the basic relationship:
#include "Appevent.ch"

PROCEDURE Main
LOCAL nEvent, mpl, mp2, oXbp

// create first pushbutton
oXbp:= XbpPushButton() :new()

oXbp:caption := "A"
oXbp:create(, , {10,220}, {100,40})
oXbp:activate := {|| QOut("Pushbutton A") }

// create second pushbutton
oXbp := XbpPushButton() :new/()

oXbp:caption := "B"
oXbp:create(, , (150,20}, {100,40})
oXbp:activate := {|| QOut("Pushbutton B") }

// Event loop
nEvent := 0
DO WHILE nEvent <> xbeP_Close
nEvent := AppEvent(€@mpl, €mp2, €@oXbp)
oXbp:HandleEvent (nEvent, mpl, mp2)
ENDDO
RETURN
In this example, two pushbuttons are created and the entire program control lies within a
single DO WHILE loop (the event loop). In this event loop, events are read from the event
queue using AppEvent(). The third parameter passed by reference to the function is assigned
a reference to the addressee for the event. The addressee might be the window or one of the
pushbuttons. The event is processed in the -handleEEvent() method of this addressee object.
Each pushbutton has an "activate" code block that is automatically executed within the
:handleEvent() method when a pushbutton is clicked with the mouse. Within these code
blocks a character is output on the screen using QOut().

Alaska Xbase* + Basic Users Guide 173

Applications in graphics mode (GUI mode)

The following illustration shows what the output on the screen might look like if each of the
two pushbuttons were clicked several times:

Output from the example program

An important point shown in the example program is that the function AppEvent() in the
event loop not only reads the event from the event queue, but also determines the addressee
for the event. The addressee is always an Xbase Part and each XBP includes the method
:handleEvent(). Three parameters are always passed by reference to the :handleEvent()
method: the numeric event code and the two message parameters. When the message is
processed within the :handle Event() method, the code block stored in the :activate instance
variable of the pushbutton is executed. This code block contains the XBP's reaction to the
specific event. When the left mouse button is clicked on a pushbutton, the xbeP_Activate
event is generated and the numeric event code (corresponding to a #define constant) is
returned by AppEvent(). When this numeric code is passed on to :handleEvent(), the method
executes the code block contained in the instance variable :activate.

For each XBP there are many instance variables that can contain code blocks that are
executed in response to specific events. The event is first read from the event queue using
AppEvent(). Then the reaction occurs when the code block provided for the event is
executed. This sequence of events is called a "callback" approach. For this reason, all
instance variables that contain code blocks defining reactions to events are referred to as
"callback slots". A callback slot contains either the value NIL or a code block to be executed
by the :handleEvent() method when the specific event occurs. The following table lists
the#define constants of predefined events for user interaction and the corresponding callback
slots available for all XBPs:

174

Alaska Xbase - Basic Users Guide

Basics of Xbase Parts

Default events which are processed by Xbase Parts

Event code Callback slot Description

Mouse events

xbeM_LbClick :LbClick Click left button
xbeM_LbDbIClick :LbDbIClick Double click left button
xbeM_LbDown :LbDown Left button pressed
xbeM_LbUp :LbUp Left button released
xbeM_MbClick :MbClick Click middle button
xbeM_MbDbIClick :MbDbIClick Double click middle button
xbeM_MbDown :MbDown Middle button pressed
xbeM_MbUp :MbUp Middle button released
xbeM_Motion :Motion Mouse moved
xbeM_RbClick :RbClick Click right button
xbeM_RbDbIClick :RbDbIClick Double click right button
xbeM_RbDown :RbDown Right button pressed
xbeM_RbUp :RbUp Right button released
Other events

xbeP_KeyBoard :KeyBoard Keyboard entry occurred
xbeP_HelpRequest :HelpRequest Help requested
xbeP_SetInputFocus :SetInputFocus Input focus granted
xbeP_KillInputFocus :KilllnputFocus Input focus lost
xbeP_Move :Move XBP moved

xbeP_Paint :Paint XBP redrawn
xbeP_Quit :Quit Application terminated
xbeP_Resize :Resize Size of XBP changed

The callback slots in this table are included in all XBPs and allow user interaction by
processing events. Many XBPs have additional callback slots for events that only occur with
specific XBPs. For example, pushbuttons have the :activate callback slot, that can contain a
code block to execute in response to the xbeP_Activate event. This callback slot is not
present in other XBPs.

In summary, the example program above shows the basic process for programming using
Xbase Parts. An XBP is created and receives the "knowledge" of how it should react to
events through the code blocks that are assigned to the callback slots. The -handleEvent()
method processes events and executes the corresponding code block. The program is
controlled in the event loop where events are read using AppEvent(). This function also
determines which Xbase Part is to process each event. In the end, the application is

Alaska Xbase* * Basic Users Guide 175

Applications in graphics mode (GUI mode)

controlled entirely by the user who generates the events.

Callback methods for processing events

The preceding section presents the basic approach to processing events with XBPs and
describes the simple model where the reaction to an event is defined by a code block assigned
to one of the predefined callback slots. Xbase** also offers a second model. Although this
model is more complicated, it has broader capabilities for processing events. This approach
utilizes callback methods. Along with each callback slot, Xbase Parts contains a callback
method of the same name that is executed instead of the code block contained in the callback
slot. Like the callback code block, the corresponding callback method is also executed by the
method :handleEvent() for each event it receives. Callback methods within the predefined
XBPs do not execute any code. They are available for user-defined XBPs where the reaction
to an event is programmed as a method rather than as a code block. The following example
program demonstrates this approach. Its effect is the same as the example in the previous
section and it displays the same results on the screen:

#include "Appevent.ch"

PROCEDURE Main
LOCAL nEvent, mpl, mp2, oXbp
SetColor ("N/W")
CLS

// create user-defined pushbuttons
MyPushButton () :new("A", { 10,20}, {100,40}):create()
MyPushButton () :new("B", {150,20}, {100,40}):create()

// Event loop
nEvent := 0
DO WHILE nEvent <> xbeP_Close
nEvent := AppEvent(@mpl, @mp2, @oXbp)
oXbp:HandleEvent (nEvent, mpl, mp2)
ENDDO
RETURN

// user-defined pushbutton

CLASS MyPushbutton FROM XbpPushbutton
EXPORTED:
METHOD init, activate

ENDCLASS

// initialize superclass and self

METHOD MyPushbutton:init(cCaption, aPos, aSize)
: :XbpPushButton:init(,, aPos, aSize)
::caption := cCaption

RETURN self

176

Alaska Xbase* * Basic Users Guide

Windows and relationships

// callback method for the event xbeP_Activate
METHOD MyPushbutton:activate

QOut ("Pushbutton ", ::caption)
RETURN self

This program differs from the example in the previous section in a couple of ways. The Main
procedure is abbreviated and the MyPushButton class is instantiated instead of the
XbpPushButton class. The method :activate() has been redefined in the user-defined class
MyPushButton to produce output using QOut(). In the previous example, the output was
programmed within callback code blocks. The role of the callback code blocks in the
previous example is replaced by the callback method :activate() in this example. The method
:activate() is then executed when the left mouse button is clicked on either one of the two
pushbuttons. Callback methods are used to process events in user-defined Xbase Parts that
are inherited from existing XBPs. They generally replace the code in callback code blocks
and require that the new class be derived from an existing Xbase Part. The callback method
of the new class contains the program code that is executed when a specific event occurs.
When a callback method is defined, a code block generally should not also be assigned to the
callback slot of the same name, since it would then be executed after the callback method.

Instance variables and methods existing in all Xbase Parts

All Xbase Parts, even those that do not process events or have a visual representation, include
the instance variable :cargo. This instance variable is not used by any Xbase Part but allows
user-defined data to be contained in the XBP without requiring that a new class be created.

XBPs also include the :status() method, which returns the current condition of an XBP in its
life cycle. This method returns a numeric value corresponding to a #define constant from the
XBP.CH file. The possible return values are listed in the following table:

Constants for the return value of :status()

Constant Description

XBP_STAT_INIT Xbase Part initialized
XBP_STAT_CREATE System resources request successful
XBP_STAT_FAILURE System resources could not be provided

The method :status() is mainly useful for debugging purposes. It can be called after the
method :create() to determine whether the system resources were provided for an Xbase Part.

14.2.2. Windows and relationships

All output in a GUI application occurs in a window on the screen. The general meaning of
the term "window" is a rectangular screen area containing a graphic display. The application
window visible on the screen actually consists of a frame and a number of additional
windows. All Xbase Parts that have a visible representation are windows in the sense of this
broader definition.

Alaska Xbase* * Basic Users Guide 177

Windows and relationships

The program itself runs in an application window which limits the area that an application
uses on the screen. The application window contains dialog elements (Xbase Parts) that also
represent windows. Each GUI application is made up of many windows. A hierarchical
relationship exists between these windows and is described using the terms "parent" and
"child". A parent window provides the display area for child windows and child windows are
contained in the parent window.

The parent-child relationship between windows represents a physical relationship and is the
most important relationship in programming using Xbase Parts. Returning to the example
from the previous section, the pushbuttons are children of the application window and are
contained in it. Viewed from the other direction, the application window is the parent of the
two pushbuttons and contains the Xbase Parts. This relationship is very significant in
processing keyboard events. Whenever a child XBP receives a key that it is not able to
process or does not understand, the event is sent on to the parent for processing. A
modification of the example in the previous section illustrates this relationship:

#include "Appevent.ch"

PROCEDURE Main
LOCAL nEvent, mpl, mp2, oXbp
SetColor ("N/W")
CLS

// get application window
oXbp := SetAppWindow ()

// display character corresponding to key pressed
oXbp:KeyBoard := {|mpl| QQOut(Chr(mpl)) }

// create user-defined pushbuttons
MyPushButton () :new("A", { 10,20}, (100,40}):create()
MyPushButton () :new("B", {150,20}, {100,40}):create()

// Event loop
nEvent := 0
DO WHILE nEvent <> xbeP_Close
nEvent :- AppEvent(€mpl, €mp2, @oXbp)
oXbp:HandleEvent (nEvent, mpl, mp2)
ENDDO
RETURN

In this example, the application window is determined using the function SetAppWindow().
The application window is assigned a callback code block for the event xbeP_Keyboard. Any
keys that the pushbuttons can not process are output as characters in the window.

178

Alaska Xbase - * Basic Users Guide

Windows and relationships

The display on the screen might appear as follows:

Display of example program

Pushbutton "B" has input focus. A pushbutton processes the space bar itself and is activated
by this key. In the example the string "Input via keyboard" was entered and only the blank
spaces were recognized by the pushbutton. Any other characters input from the keyboard are
not understood by the pushbutton, and are instead processed by the parent of the pushbutton.
The callback code block assigned to the :keyBoard instance variable in the application
window uses QQOut() to display the keyboard character that was pressed.

The child list

Relations between windows, or Xbase Parts, respectively, are managed by the
XbpPartHandler class. It is the root class for all XBPs having a visual representation. When
an XBP executes the :create() method, the object is automatically added to an internal array
of its parent window: the child list. The child list references all XBPs contained in a window
(Note: the child list array is returned by the :childList() method). Therefore, in a program it is
sufficient to assign the reference of the application window to a variable in order to be able to
access all contained XBPs. These are added to the child list array in the same order as they
execute the :create() method. If the creation order is known an XBP can be retrieved using a
numeric index. For example:

oButton := oXbp:childList () [2]
? oButton:caption // result: B

In the example program, the pushbutton "B" is created second. It is referenced in the second
element of the child list array of the application window.

Alaska Xbase* * Basic Users Guide 179

XbpCrt() - The window for hybrid mode

Overlapping XBPs

On the one hand, the creation order of XBPs determines their position in a parent window's
child list. On the other hand, it determines the order of display. The XBP which executes its
:create() method first is displayed first, too. The one created last is displayed last. Therefore,
it appears in front of all other XBPs. This aspect becomes important when XBPs have the
same positions in a window or are overlapping each other. This is the case when XBPs are
grouped visually by a surrounding frame. For instance, if single line entry fields (XbpSLE)
are to be grouped by a static frame (XbpStatic), the frame must be created first and then the
entry fields are to be positioned inside the frame.

Additional information about the relationships between windows can be found in the
reference documentation for this class. At this point, two Xbase Parts which may be used as
the first or highest parent in the parent-child hierarchy of a GUI application need to be
described first. These provide the application window. The application window manages the
area on the screen where all output of a GUI application occurs and where all other Xbase
Parts are displayed (an exception is MDI applications which can have several application
windows). The application window for a GUI application is created in the function AppSys()
when the Xbase** program starts. The source code for AppSys() is contained in the file
.\SOURCE\SYS\APPSYS.PRG. A window of the XbpCrt class is generated by default and
allows both text-based and graphic output. However, the function AppSys() can be modified
so that the application window is provided as an object of the XbpDialog class. In this case,
only graphic output is possible.

14.2.3. XbpCrt() - The window for hybrid mode

The default application window used by a GUI application is an XbpCrt window. This type
of window is a hybrid between text mode (VIO mode) and graphics mode. It was created for
Xbase* to allow a seamless migration from DOS applications (Clipper programs) to a 32bit
operating system with graphic user interface. Within an XbpCrt window, data can be output
using pure text oriented functions like DispOut() or QOut() as well as pure graphic output
using functions of the GRA engine. An XbpCrt window combines the text mode capabilities
of a VIO application with the graphics mode capabilities of a GUI application. This
combined form is called "hybrid mode", and allows stepwise porting of existing DOS text
mode applications into 32bit GUI applications.

An XbpCrt window allows graphic and text oriented output. Also, Xbase Parts can be
displayed in XbpCrt windows so that a program originally developed under DOS can be
transitioned step by step into a GUI application. Special adaptations for processing events are
not required, since an XbpCrt window performs these tasks independently. As an example,
consider a simple program created using a purely procedural approach that implements data
entry using a series of Get objects.

180

Alaska Xbase* - Basic Users Guide

XbpCrt() - The window for hybrid mode

The current record is changed during input via the F6 and F7 function keys:
#include "Inkey.ch"

PROCEDURE Main

SetColor("N/W,W+/N")
CLS
@ MaxRow()-1, 2 SAY "<F6>-Next <F7>-Previous"

SetKey(K_F6, {|| DbSkip(1), RefreshGetList() })
SetKey(K_F7, {I|| DbSkip(-1), RefreshGetList() })

USE Customer EXCLUSIVE

DO WHILE LastKey() <> K_ESC
@ 3,1 SAY "First Name:" GET Customer->FIRSTNAME
@ 5,1 SAY "Last Name :" GET Customer->LASTNAME
READ
ENDDO
RETURN

PROCEDURE RefreshGetList
AEval(GetList, {|oGet| oGet:reset() , ;
oGet :display () })
RETURN

The program logic for changing records is implemented via code blocks that are associated
with function keys using SetKey(). The function keys that are linked to code blocks are ideal
candidates for replacement with pushbuttons in a hybrid mode application. This would help
give the text mode application a more GUI look. Pushbuttons are easily added to the XbpCrt
window. The two pushbuttons just need to be created in the Main procedure and replace the
function SetKey():

#include "Inkey.ch"

PROCEDURE Main
LOCAL oXbp
SetColor{ "N/W,W+/N")
CLS

SetMouse(.T.)
oXbp:= XbpPushButton() :new()

oXbp:caption := "Next"
oXbp:activate:= {|| DbSkip(1), RefreshGetList () }
oXbp:create(,, (10,10}, {90,30})

oXbp:= XbpPushButton () :new()

Alaska Xbase* * Basic Users Guide 181

XbpCrt() - The window for hybrid mode

oXbp:caption := "Previous"
oXbp:activate:= {|| DbSkip(-1), RefreshGetList() }
oXbp:create(,, {110,110}, {90,30})

USE Customer EXCLUSIVE

DO WHILE LastKey () <> K_ESC
@ 3,1 SAY "First Name:" GET Customer->FIRSTNAME
@ 5,1 SAY "Last Name :" GET Customer->LASTNAME
READ
ENDDO
RETURN

The result of this change in the example program is shown in the next illustration:

Migration from text mode to a hybrid application

There are a couple of important points in these two examples. First, only control of database
movement is handled by objects of the XbpPushButton() class. The actual logic of the data
input screen is not changed and the program still appears to be procedural. It is now
somewhat more event driven, but only the task of handling pushbutton events is assumed by
the XbpCrt window. The call to the function SetMouse(.T.) at the start of the second example
causes the Get entry fields to react to mouse events. This means that within the Get system
events are retrieved using AppEvent() instead of the compatibility function Inkey(). This
process offers a very easy way to port existing DOS applications into a GUI environment in a
stepwise manner. As another example, all @...PROMPT / MENU TO commands for program
control are easily transitioned to a menu system with a main menu appearing as a menu bar at
the top of the XbpCrt window.

The modified program shows another characteristic of an XbpCrt window: text mode row
and column coordinates with an origin in the upper left corner of the window can be used as
well as graphic xy coordinates with the origin at the bottom left (the pushbuttons are
positioned in the window based on xy coordinates). Within an XbpCrt window dialog
functions like AChoice() or MemoEdit() can be used and their output can be displayed next

182

Alaska Xbase " * Basic Users Guide

XbpDialog() - The window for GUI mode

to graphic output such as Xbase Parts, bitmaps or a bar chart. The XbpCrt window also
supports the text mode color system along with graphics mode colors which means that
colors can be set using SetColor() or GraSetColor().

Since an XbpCrt window also allows text oriented output, its maximum size is limited to the
function values of MaxRow() and MaxCol(). The default window size is 25 text lines and 80
columns corresponding to the size of a text screen. The size of the screen can be reduced
using the mouse, but it can not be made larger than MaxRow() and MaxCol(). Changing the
maximum number of rows and columns can be done using the Clipper compatible function
SetMode(). SetMode() supports a limited number of sizes. Alternatively, the size of a text
mode window can be set when creating an XbpCrt window to any number of rows and
columns desired.

In summary, all commands and functions in the scope of the Clipper language and the
additional functionality of Xbase*+ and Xbase Parts can be used in an XbpCrt window. An
XbpCrt window is created for the exclusive purpose of allowing an easy way to port existing
DOS applications to the GUI environment. This has the advantage of allowing the seamless
migration of existing text mode applications to GUI. The disadvantage of this approach is the
increased memory requirement of an XbpCrt window as opposed to a dialog window that
does not allow text based output. The increased memory requirement of an XbpCrt window is
inevitably paid for in a loss of performance. For this reason, it is recommended that new
development of applications under Xbase** not use the XbpCrt window. This is accomplished
by modifying the function AppSys() in APPSYS.PRG to create an object of the XbpDialog()
class as the application window.

14.2.4. XbpDialog(- The window for GUI mode

The class XbpDialog() provides an application window for pure graphic mode. Text based
output is not possible in these dialog windows. This means that all output commands and
functions that perform text based screen output under Clipper can no longer be used. Screen
output occurs in a dialog window using only Xbase Parts and the functions of the GRA
engine. XbpDialog objects are used to program pure GUI applications that are optimized for
the operating system and use most of its capabilities.

Before continuing the discussion of the XbpDialog object, it is worthwhile to clarify which
functions and commands are no longer available. The commands and functions listed in the
_following table can not be used if the current window is an XbpDialog object:

Commands and functions that cannot be used in dialog windows

Commands Functions

2707? SET CURSOR AChoice() QOut() QQOut()
@..BOX SET DELIMITERS Alert() Read...()
@...CLEAR" SET INTENSITY Browse() RestScreen()
@..GET SET MESSAGE Col() Row()

@...PROMPT SET SCOREBOARD ColorSelect() SaveScreen()

Alaska Xbase* Basic Users Guide 183

XbpDialog() - The window for GUI mode

Commands Functions

@..SAY SET WRAP DbEdit() Scroll()

@..TO TEXT DevOut() SetBlink()
ACCEPT TYPE DevOutPict() SetColor()
CLEAR ALL WAIT DevPos() SetCursor()
CLEAR GETS DispBegin() SetMode()
CLEAR SCREEN DispCount() SetMouse()
DISPLAY DispEnd() SetPos()

INPUT DispOut() TBApplyKey()
LIST DispOutAt() TBColumn()
MENU TO Get() TBColumnNew()
READ Get...() TBHandleEvent()
RESTORE SCREEN GetNew() TBrowse()
SAVE SCREEN MaxCol() TBrowseDb()
SET COLOR MaxRow() TBrowseNew()
SET CONSOLE MemokEdit() TBtoMousePos()

All of the commands and functions affecting the cursor are no longer available, since the
cursor as it is used in text mode does not exist in graphics mode. Similarly, the commands
and functions that manipulate the text mode screen (such as SaveScreen(), DispBegin(),
Scroll() and RESTORE SCREEN) can not be used in a dialog window which operates in
graphics mode. Xbase Parts and functions of the GRA engine are used in place of these text
based output functions and commands.

Along with these commands and functions there are two other small groups of functions. The
first represents compatibility functions that should no longer be used. The second group of
functions only operate if the printer has been set as the output device using the command
SET DEVICE TO PRINTER. The following table gives an overview:

Commands and functions which are not to be used in dialog windows

Command/Function Only usable with SET DEVICE TO PRINTER
SET KEY DevOut()

Inkey() DevOutPict()

SetKey() DevPos()

LastKey() PRow()

NextKey() PCol()

IsPrinter()

In order for the application window to be provided as a graphics dialog window, an
XbpDialog object needs to be created in the function AppSys(). This function is normally
executed prior to the call of the MAIN procedure. The default source code for AppSys()
appears in the APPSYS.PRG file, but it can be included in another file if it is linked to the

184

Alaska Xbase* * Basic Users Guide

XbpDialog() - The window for GUI mode

executable file. The following lines are taken from the example program SDIDEMO.PRG
(the example is shortened) and give an example of modifications made to AppSys():

KAhkhkkkkhk kA hkhk kA khkkhkk ok kkkkk ok kkkkk kA kkkk Ak khkkkkkkkkkkkkkhkkhkkhkkkkk kX%

* Example for AppSys() in an SDI application
* The function is executed prior to Main()
KA KA A KA AR AR A A A A AR A AR R AR AR AR AR A AR A A A A AR A AN AA A AR A A A A Ak Ak Ak kA AR AR KKk k&
PROCEDURE AppSys
LOCAL oDlg, oXbp, aPos([2], aSize, nHeight:=400, nWidth := 615

// Get size of desktop window
// to center the application window

aSize := SetAppWindow () :currentSize ()
aPos[1l] := Int((aSize([l]-nwWidth) / 2)
aPos (2] = Int((aSize([2]-nHeight) / 2)

// Create application window
oDlg := XbpDialog() :new()

oDlg:title := "Toys & Fun Inc. [Xbase++ - SDI Demo]"
oDlg:border:= XBPDLG_THINBORDER
oDlg:create(,, aPos, {nWwidth, nHeight},, .F.)

// Set background color for drawing area
oDlg:drawingArea:SetColorBG(GRA_CLR_PALEGRAY)

// Select font
oDlg:drawingArea:SetFontCompoundName("8.Helv.normal")

// Display application window and set focus to it
oDlg:show ()

SetAppWindow(oDlg)

SetAppFocus (oDlg)

RETURN

In this procedure, a reference to the desktop window is returned by the function
SetAppWindow() and is used to determine its size. This allows the Xbase** application
window to be centered on the screen when opened, regardless of the screen resolution. The
dialog window created in the example has a fixed size, because the box type
XBPDLG_THINBORDER does not allow the user to change the size of the window. This is
the simplest variation, since changing the size of the application window also involves
repositioning or redimensioning the dialog elements (XBPs) contained in the window.

After the dialog window has been created, it is recommended that the background color for
the drawing area be set. This also sets the background color for text displayed as captions for
XBPs such as XbpStatic, XbpRadioButton or XbpCheckBox. The method :setColorBG()
returns the color of the drawing area and sets the default color used for displaying all XBPs
with captions.

Alaska Xbase* * Basic Users Guide 185

XbpDialog() - The window for GUI mode

The drawing area of XbpDialog

The background color is set using the method :setColorBG(). This method is not executed by
the XbpDialog object in the example, but by an object contained in the instance variable
:drawingArea. This is because the XbpDialog objects contain additional objects of the
XbpIWindow class. Objects of this class provide implicit windows that do not have a title bar
or a frame, but that manage rectangular screen areas. An XbpDialog object basically consists
of a frame that limits the screen area which is available for an application. The title bar of the
dialog window as it appears on the screen is a window, as is the drawing area within the
dialog. Both these windows are implicit windows of the XbpDialog object. They are objects
of the XbpIWindow class and are contained in the instance variables :titleBarArea and
:drawingArea. The drawing area of the XbpDialog object plays an important role when
programming with dialog windows.

Important: Each dialog element (XBP) that is displayed in a dialog window must have
:drawingArea as the parent rather than the XbpDialog object itself. Otherwise the sizeable
border of the dialog window becomes the parent and an XBP would be visible only in this
2-8 pixel wide frame.

For example, if a pushbutton is to be displayed in a dialog window, it must be a child of the
drawing area (:drawingArea) of the XbpDialog object. This is a difference between how a
dialog window works and an XbpCrt window which can itself act as parent. An XbpDialog
object is the parent of only the two implicit windows that manage the drawing area and the
title bar. Both of these windows are accessible through instance variables of the XbpDialog
object. An example of displaying a pushbutton in a dialog window is shown in the following
program code:

#include "Appevent.ch"

PROCEDURE Main
LOCAL nEvent, mpl, mp2, oXbp

// Create pushbutton
oXbp:= XbpPushButton() :new(SetAppWindow () :drawingArea)

oXbp:caption := "Cancel"
oXbp:create(, , {10,20}, {100,40})
oXbp:activate := {|| PostAppEvent(xbeP_Close) }

// Event loop
nEvent := 0
DO WHILE nEvent <> xbeP_Close
nEvent := AppEvent(@mpl, @mp2, @GoXbp)
oXbp:HandleEvent (nEvent, mpl, mp2)
ENDDO
RETURN

186 Alaska Xbase - * Basic Users Guide

Class hierarchy of Xbase Parts

Here the parent for the pushbutton is specified in the call to a method. The function
SetAppWindow() returns the XbpDialog object created in AppSys() and a reference to its
drawing area is passed to the pushbutton method :new(). If the drawing area is not specified
as the parent for Xbase Parts, it inevitably leads to an error in the display or no display at all
within the dialog window. It is important to remember that with XbpDialog objects the
drawing area (0XbpDialog:drawingArea) must be set as the parent, not the XbpDialog object
itself.

14.2.5.Class hierarchy of Xbase Parts

This section gives an overview of the class hierarchy of Xbase Parts. The relationship
between different Xbase Parts is illustrated in the illustration below as well as which XBPs
utilize the capabilities of another class. The classes marked with "[A]" are abstract classes
which can not themselves be instantiated on the Xbase** language level. All Xbase Parts that
have a visible representation are derived from the XbpPartHandler class. The XbpPartHandler
class implements the parent-child relationship and defines the method :handleEventy().

l Class hierarchy of Xbase Parts I

CLASS DESCRIPTION
XbpPartHandler Managaes relationships and events
XbpCrt Hybrid window
XbpHelp Window for online help
XbpSysWindow {A} Abstract class for system dialogs
XbpFileDialog File dialog
XbpFontDialog Font dialog
XbpWindow [A} Abstract class for windows
— XbpDialog Dialog window
— XbplWindow [A] Abstract dlass for implicit windows
— XbplistBox {DataRef) List box
— XbpMenuBar Menu bar
L— XbpMenu Popup menu
[~ XbpMLE (DataRef) Muttiple fine entry fietd
P XbpPushButton Pushbutton
— XbpScroliBar (DataRef) Scrolt bar
- XbpSetting (DataRef) (A} Abstract class for switches
Xbp3State Three State Button
XbpCheckbox Checkbox
XbpRadioButton Radiobutton
[XbpSLE (DataRef) Single line entry field
XbpCombaobox (XbplistBox) Combo box
XbpSpinButhon Spin butian
- XbpStatic Static dialog element
t XbpBrowse (DataRef) Browssr
XbpColumn (DataRef) Coiumn for browser
— XbplabPage Tab page
— XbpTreeView (DalaRel) Tree view
XbpDavice [A} Abstract class for device context
XbpPrinter Printer device context
XbpFileDevice Metafile device contaxt
XbpFont Fonts
XbpPregSpace Preseniation space
XbpBitmap Bitmap
XbpMetaFiie Metafile
XbpHelpt.abel Help iabel

(...} = additional superclass, [A] = abstract class

Alaska Xbase* * Basic Users Guide 187

DataRef() - The connection between XBP and DBE

14.2.6. DataRef() - The connection between XBP and DBE

In the class hierarchy of Xbase Parts, nine classes are derived not only from XbpPartHandler
or XbpWindow but also from the DataRef class. The DataRef class provides objects that
reference data. It provides data from either a memory variable or a field variable for use in an
XBP. All Xbase Parts that can modify data also have DataRef as a superclass. The DataRef
class provides services for accessing data. In the simplest case, this data is a value that only
exists in the edit buffer of an Xbase Part and is changed there. The following Xbase Parts use
an edit buffer for storing data:

Xbase-Parts derived from DataRef (XBPs with edit buffer)

XBP Data type in the edit buffer

XbpSLE Unformatted character string (single line)
XbpMLE Formatted character string (multiline)
Xbp3State Numeric value (0, 1, 2)

XbpCheckBox Logical value

XbpRadioButton Logical value

XbpSpinButton Numeric value (in the limits Min and Max)
XbpListBox Array (numeric position of the selected entries)
XbpComboBox Array and character string (special case)
XbpScrollBar Numeric value (-2*15 to +2715)

Access to data stored in the edit buffer of an Xbase Part occurs in the method :getData()
which is implemented in the DataRef class. :getData() returns the value in the edit buffer. In
the following example, an entry field is created and after each keypress the current contents
of the edit buffer are displayed:

#include "Appevent.ch"

PROCEDURE Main
LOCAL nEvent, mpl, mp2, oXbp

CLS // This is an XbpCrt window

// Create entry field
oXbp:= XbpSLE() :new()

oXbp:create(, , {50,50}, {100,301})
oXbp:keyBoard :- {|mpl, mp2, objl;
IIf(mpl=- xbeK_ESC, ; // Esc key was pressed
PostAppEvent (xbeP_Close), ; // terminate program
QOut (obj:getDatal())) } // display buffer

// Event loop
nEvent := 0
DO WHILE nEvent <> xbeP_Close

188

Alaska Xbase - Basic Users Guide

DataRef() - The connection between XBP and DBE

nEvent := AppEvent(€mpl, @mp2, €oXbp)
oXbp:HandleEvent (nEvent, mpl, mp2)
ENDDO
RETURN

In the example, the contents of the edit buffer of the XbpSLE object are read in the code
block assigned to the -keyBoard callback slot. This code block is evaluated after each
keypress and receives the XbpSLE object as the third parameter obj.

The example illustrates that managing and changing data in a program just requires Xbase
Parts that include an edit buffer. The value to be edited is stored in this edit buffer. Generally,
no other memory variable referencing the value is needed.

The DataRef class provides the instance variable :dataLink to link an Xbase Part to a
database field in order to display or change field variables. A data code block that defines
how to access a database field can be assigned to this instance variable. This data code block
provides the connection between an Xbase Part, a field variable and DatabaseEngine. The
following example uses an XbpSLE object to access a database field:

#include "Appevent.ch"

PROCEDURE Main
LOCAL nEvent, mpl, mp2, oXbp, oSLE
FIELD LASTNAME

// open database (for exclusive access)
USE Customer EXCLUSIVE

// create entry field
OSLE := XbpSLE() :new()
oSLE:create(,, {50,100}, {100,30})

// reference database field
oSLE:dataLink := {|x| IIf(x==NIL, LASTNAME, LASTNAME:=x) }

// copy database field into SLE
oSLE:setData()

// Pushbutton to cancel program
oXbp := XbpPushButton() :new()

oXbp:caption := "Cancel"
oXbp:create(, , {50,50}, (80,30})
oXbp:activate := {|| PostAppEvent(xbeP_Close) }

// Pushbutton to go to next record
oXbp := XbpPushButton() :new()
oXbp:caption := "Next"

oXbp:create(,, {150,50}, (80,30})

Alaska Xbase* * Basic Users Guide 189

DataRef() - The connection between XBP and DBE

oXbp:activate := {|| oSLE:getData(), ; // write data
DbSkip(1) , : // skip forwards
oSLE:setData() } // read new data

// Pushbutton: go to previous record

oXbp := XbpPushButton() :new()

oXbp:caption := "Previous"

oXbp:create(,, {250,50}, {80,30})

oXbp:activate := {|| oSLE:getData(), ; // write data
DbSkip(-1) , ; // skip backwards
oSLE:setData() } // read new data

// Event loop
nEvent := 0
DO WHILE nEvent <> xbeP_Close
nEvent := AppEvent(€@mpl, @mp2, €oXbp)
oXbp:HandleEvent (nEvent, mpl, mp2)
ENDDO
RETURN

The example is a little more complex because it creates three kinds of dialog elements: an
XbpSLE object that can edit a database field, a pushbutton to cancel the program and two
pushbuttons to perform database navigation. One of the most important elements in this
example is the data code block assigned to the instance variable :dataLink. This code block
defines access to the database field LASTNAME. This code block is executed within the
methods :setData() and :getData() which are implemented in the DataRef class (the XbpSLE
class also inherits from DataRef!). The method :setData() evaluates the data code block
without passing a parameter to it and assigns the return value of the code block to the edit
buffer of the XbpSLE object. In other words, the method :setData() reads the value of the
database field LASTNAME and copies it into the edit buffer of the entry field. The method
:getData() performs the reverse function: it reads the value from the edit buffer of the
XbpSLE object and passes this value to the data code block in the instance variable
:dataLink. An assignment to the field variable occurs within this data code block. :getData()
reads the edit buffer of an Xbase Part and writes it into the database field via :dataLink.

In the example, two pushbuttons are programmed to provide navigation in the database. At
any given time they can be used to select the next or previous record. This occurs in code
blocks assigned to the :activate callback slots of the pushbuttons. In both code blocks the
method :getData() is called before the record pointer is moved and :setData() is called after
the DbSkip(). One of the special characteristics of an event driven GUI application is that the
user controls the program execution. In the program itself it can not be predicted when a
particular pushbutton will be pushed or when input in the entry field will be performed. Due
to this uncertainty, the current value in the edit buffer of the entry field must be written back
into the database before the record pointer is moved. And in reverse, the contents of the
database field must be copied into the edit buffer immediately after the pointer is moved.

190

Alaska Xbase* * Basic Users Guide

Creating GUI applications

In summary, the functionality of the DataRef class is used by all Xbase Parts that can edit
data (all those that have an edit buffer). These XBPs are derived from both the XbpWindow
and the DataRef classes. DataRef provides the mechanism for the connection between the
XBP and variables (either field variables or memory variables). To create this connection, the
DataRef class uses the code block :dataLink and the methods :setData() and :getData(). The
DataRef class also provides methods that perform data validation (the :validate() method) or
void changes made to the edit buffer (the :undo() method). See the reference documentation
for DataRef() or the example program in the section "Creating GUI applications" for more
information.

14.3. Creating GUI applications

This section shows how to design and program GUI applications. It serves both as a guide for
programmers new to a graphic user interface and as a source of solutions to some of the
problems that may arise when programming GUI applications. Most of the example programs
discussed in this section are also provided in the Xbase** installation. Tips are included for
organizing GUI applications and the answers to questions such as "How is this
programmed?" and "Where is this implemented?" are discussed.

14.3.1. Tasks of AppSys(

The main task of the AppSys() function is to create the application window. Since AppSys()
is an implicit INIT PROCEDURE, it is always called prior to the Main procedure. The
application window object created in AppSys() depends on the type of application. It could
be an XbpCrt window or an XbpDialog window. In order to ensure the widest possible
compatibility, the default AppSys() routine included in Xbase** creates an XbpCrt window.
When developing new GUI applications using Xbase**, AppSys() should generally be
changed to create an XbpDialog window instead. Additional tasks that must be performed
only once at application startup can also be included in this procedure. This often includes
creating the menu system, providing a help routine and initializing system wide variables or
other necessary resources. These tasks can be accomplished before the application window is
even visible, which allows the essential parts of the application to already be available when
the Main procedure is called.

The first decision in implementing AppSys() is whether to use XbpCrt or XbpDialog
windows. In the case of a GUI application, the application type must also be considered. The
concept "application type" designates the kind of user interface that the application will
provide. The simpler case is an SDI application (Single Document Interface) where the
application consists of a single window. The alternative is an MDI application (Multiple
Document Interface). An MDI application runs in multiple windows and AppSys() just
creates the main window allowing the additional windows within the main window to be
generated later in the program. The size of the application window generally depends on the

Alaska Xbase* * Basic Users Guide 191

Tasks of AppSys()

application type. The application window of an SDI application can be smaller than that of an
MDI application, since no additional windows are needed in an SDI application. Also, the
window size of an SDI application can be fixed, not allowing the user to change the size. The
size of the application window of an MDI application must be changeable by the user. The
following example is the AppSys() procedure from the file SDIDEMO.PRG that presents a
complete example of an SDI application. The various tasks performed by AppSys() are
demonstrated in the following procedure:

PROCEDURE AppSys
LOCAL oDlg, oXbp, aPos[2], aSize, nHeight:=400, nWidth := 615

// Get size of desktop window
// to center the application window

aSize := SetAppWindow () :currentSize()
aPos[1l] := Int((aSize[l]-nWidth) / 2)
aPos[2] := Int((aSize[2]-nHeight) / 2)

// Create application window
oDlg := XbpDialog() :new()

oDlg:title := "Toys & Fun Inc. [Xbase++ - SDI Demo]"
oDlg:border:= XBPDLG_THINBORDER
oDlg:create(,, aPos, {nWidth, nHeight},, .F.)

// Set background color for drawing area
oDlg:drawingArea:SetColorBG(GRA_CLR_PALEGRAY)

// Select font
oDlg:drawingArea:SetFontCompoundName ("8.Help.normal")

// Create menu system (UDF)
MenuCreate(oDlg:menuBar())

// Provide online help via UDF
oXbp := XbpHelpLabel():new():create()
oXbp:helpObject := ;
HelpObject ("SDIDEMO.HLP", "Help for SDI demo")
oDlg:helpLink := oXbp

// Display application window and set focus to it
oDlg:show ()

SetAppWindow(oDlg)

SetAppFocus (oDlg)

RETURN

In this example, a dialog window is created with the size 615 x 400 pixels. This size allows it
to be completely displayed even on a low resolution screen. The window is provided for an
SDI application and has a fixed size (XBPDLG_THINBORDER). The first call to

192

Alaska Xbase * Basic Users Guide

Creating GUI applications

SetAppWindow() provides a reference to the desktop on which the application window is
displayed. The :currentSize() method of this object provides the size of the desktop window
corresponding to the current screen resolution. This information is used to position the
application window when the Xbase** application is called. In the example, the application
window is displayed centered on the screen.

After the background color for the drawing area of the dialog window is set, the menu system
is generated in the function MenuCreate(). This user-defined function (UDF) receives the
return value of the method :menuBar() as an argument. The :menuBar() method creates an
XbpMenuBar object and installs it in the application window. The menu system must then be
constructed in the UDF. This approach is recommended because the menu system
construction can be performed before the application window is visible. The mechanics of
constructing a menu system is described in the next section.

In this AppSys() example, the mechanism for the online help is implemented after the menu
system is created in MenuCreate(). This includes the generation of an XbpHelpLabel object
that is assigned to the instance variable :helpLink. The help label object references help
information and activates the window of the online help. The online help window is in turn
managed by an XbpHelp object which must be provided to the XbpHelpLabel object. This is
done by assigning an XbpHelp object to the :helpObject instance variable of the
XbpHelpLabel object. The XbpHelp object manages online help windows and should exist
only once within an Xbase* application. For this reason it is created in the user-defined
function HelpObject() which is shown below:

LB AR R R RS RS ERERERRRRERRRRR SRSt R Rt RSt s s RS ERR RS EEEEs

* Routine to retrieve the help object. It manages the online help
AA kAR AR AR AR AR AR AN AR A Ak Ak kA kA hk kA Ak kkk Ak ko k kA kA AR I Ak A h kA hkkkkkkkhkkkkkx

FUNCTION HelpObject(cHelpFile, cTitle)
STATIC soHelp

IF soHelp == NIL
soHelp := XbpHelp() :new()

soHelp:resGeneralHelp := IPFID_HELP_GENERAL

soHelp:resKeysHelp := IPFID_HELP_KEYS

soHelp:create(SetAppWindow(), cHelpFile, cTitle)
ENDIF

RETURN soHelp

An XbpHelp object is created and stored in a STATIC variable the first time this function is
called. The XbpHelp object manages the online help window of an Xbase* application and a
reference to it can be retrieved by calling the function HelpObject() at any point in the
program. This allows any number of XbpHelpLabel objects to be created that always activate
the same XbpHelp object (or the same online help).

The function HelpObject() needs to receive the file name for the HLP file and the window
title for the online help. Otherwise this function is generic. It also uses two #define constants
which reference the two help windows available in each application. These constants can

Alaska Xbase* * Basic Users Guide 193

The menu system of an application

only be user-defined and must be used in the source code of the online help as numeric IDs in
order to reference the specific help window (additional information about the construction of
online help is in the chapter "The IPFC help compiler").

14.3.2. The menu system of an application

The menu system of a GUI application plays a centrol role for program control. This menu
must be created only once, generally within the function AppSys() prior to the first display of
the application window. When the menu system is created within AppSys() or before the
application window is displayed, the user does not see the construction of the menu system.
The menu in the application window is already complete when the window is displayed for
the first time.

The menu system consists of an XbpMenuBar object which manages the horizontal menu bar
in the application window and several XbpMenu objects that are inserted in the menu bar as
submenus. There are several ways to implement program control using menus. The simplest
form is shown in the SDIMENU.PRG file (which presents an example SDI application). The
most important steps are shown in the following code:

/* Call in AppSys() */

MenuCreate(oDlg:menuBar())

kkkkkhkhhhkhhkhhhkhhkhhhhkhkhhhhhhkhhhhd Ak hhhkhhkhkkkhkkhkkhhkhdkhkhkhkkkkkkk k%

* Create menu system in the menu bar of the dialog
Ak kkkhkkk kA kKA A XA AR A I Ak kb Ak kA hk bk kA bk kb A hk b bk hkd bk kA hkhkhkhkkkkkhkkhkkkkkkkkkxx

PROCEDURE MenuCreate(oMenuBar)
LOCAL oMenu

// First sub-menu
//

oMenu := SubMenuNew(oMenuBar, "~File")

oMenu:addItem({ "Options", })
oMenu:addItem(MENUITEM_SEPARATOR)
oMenu:addItem({ "~Exit" , NIL })

oMenu:activateItem := ;
{InItem,mp2,obj| MenuSelect (obj, 100+nItem) }

oMenuBar:addItem({oMenu, NIL})

// Second sub-menu -> customer data

//

oMenu := SubMenuNew(oMenuBar, "C~ustomer")
oMenu:setName (CUST_MENU)

194

Alaska Xbase* - Basic Users Guide

The menu system of an application

oMenu:addItem(
oMenu:addItem(
oMenu:addItem(
oMenu:addItem(

"~New" , NIL })

"-Seek" , NIL })

"~Change", NIL })

"~-Delete",NIL , 0, ;

XBPMENUBAR_MIA_DISABLED })

oMenu:addItem({ "~Print" ,NIL , 0, ;
XBPMENUBAR_MIA_DISABLED })

oMenu:activateltem := ;

{InItem,mp2,0bj| MenuSelect(obj, 200+nItem) }

oMenuBar:addItem({oMenu, NIL})

/* And so forth... */

XbpMenu objects are created to contain the menu items. These submenus are created in the
user-defined function SubMenuNew() (which is shown below), and menu items are attached
to the submenus using the addltem() method. A menu item is an array containing between
two and four elements. In the simplest case the first element is the character string to be
displayed as the menu item caption and the second element is NIL. Any character in the
character string can be identified as a short-cut key by placing a tilde (~) in front of it. The
second element is the code block to be executed when the menu item is selected by the user.
In this example, instead of defining individual code blocks for each menu item a callback
code block is defined for the entire submenu and the numeric position of the selected item
and the menu object itself are passed to the selection routine MenuSelect(). In this routine a
simple DO CASE...ENDCASE structure provides branching to the appropriate program
module.

The second menu in the example is assigned a numeric ID (#define constant CUST_MENU)
in the call to the method :setName(). This allows a specific XbpMenu object to be found
later, since this value is found in the child list of the XbpMenuBar object which in turn is
stored in the child list of the application window. The expression
SetAppWindow():childFromName(CUST_MENU) would provide a reference to this
XbpMenu object. This can be used to make individual menu items temporarily unavailable
(or available again) if this is desired in a specific program situation.

Inserting submenus into the main menu is done using the method :addltem() executed by the
XbpMenuBar object. The title of a menu serves as text for the menu item. In the example
program this text is set for a new submenu as follows:

khkhkhkhkkhkkhkhkhkhkhkkkhkhhkhkhkhhhkhkhhkhkhdhhhhhhkhkhhk Ak hkdkdkhkkhkkhkkhkhkkhkhkhhkkhkhkhkhhkkkhx

* Create sub-menu in a menu
Ak kA kA kA A A A A AR Ak kA Ak kA A A A A A AR A A A A A kA kA Ak ko k ko kkkhkkkkkkkk k%
FUNCTION SubMenuNew(oMenu, cTitle)
LOCAL oSubMenu := XbpMenu () :new(oMenu)
oSubMenu:title := cTitle
RETURN oSubMenu:create()

Alaska Xbase ' * Basic Users Guide 195

The menu system of an application

In this function the main menu (or the immediately higher menu) is provided as the parent of
the submenu. Assigning the title must occur prior to the call of the method :create() for
correct positioning:

The default help menu

Each application should have a "Help" menu item that generally includes the same set of
menu items. In the example program, this help menu is created by a separate procedure which
creates the default menu items. Program control is implemented by code blocks that are
passed to the menu in the method :addltem(). In this case the callback code block
:activateltem is not used.

Ak hkhkkhkhkkhkdkhkhkkhkkdkhkhhkhkkhkkkhkhkhkhkkdkhkdkhkhkhkhhkdkhkhkhkhkhkhhkhkhkhkkhkhkkkkhkhkhkkkhkkhkkkkkk

* Create standard help menu
AR K KKK Kk Ak Ak kA hkhhkhkhhhkhhhkhkhhkkhkhkhkrdkhkkhkhkhkhkhkhkh bk hhkhhkhhhhkhhkrkrhkhkrkrhhkkhkkkk

PROCEDURE HelpMenu(oMenuBar)
LOCAL oMenu := SubMenuNew(oMenuBar, "~Help")
oMenu:addItem({ "Help ~index", ;
{I| HelpObject () :showHelpIndex() } })

oMenu:addItem({ "~General help", ;
{|| HelpObject () :showGeneralHelp() } })

oMenu:addItem({ "~Using help",
{|| HelpObject () :showHelp(IPFID_HELP_HELP) } })

oMenu:addItem({ "~Keys help", ;
{|| HelpObject () :showKeysHelp() } })

oMenu:addItem(MENUITEM_ SEPARATOR)

oMenu:addItem({ "~Product information", ;
{1l MsgBox("Xbase++ SDI Demo") } })

oMenuBar:addItem({oMenu, NIL})
RETURN

The online help is managed by the XbpHelp object that is stored as a static variable in the
user-defined function HelpObject(). This means it is always available when the function
HelpObject() is called. Default help information can be called from the help menu by
executing the XbpHelp object's methods provided for these purposes. A special method does
not exist for the item "Using help". Here a #define constant is specified to the XbpHelp
object that designates the numeric ID for the appropriate help window in the online help. The
same ID must also be used in the IPF source code.

196

Alaska Xbase ' + Basic Users Guide

The menu system of an application

A dynamic menu for managing windows

In addition to the help menu that is available in both SDI and MDI applications, MDI
applications have a second default menu that is used to bring different child windows of the
MDI application to the front. The text in the title of each opened window appears as a menu
item and selecting a menu item sets focus to the corresponding child window. This requires a
dynamic approach to the menu, because the number of menu items corresponds to the number
of open windows. A dynamic window menu is implemented for this purpose in the
MDIMENU.PRG file (which is part of the source code for the MDIDEMO sample
application). It is a good example of deriving new classes from an Xbase Part. To accomplish
this, a way to easily determine the main menu of the application window (the parent window)
is needed. The function AppMenu() is included in MDIDEMO.PRG for this purpose and
returns the main menu of the application. There is also only one window menu per
application so it can be stored in a STATIC variable. The function WinMenu() performs this
task as shown in the following code:

LR R RS ER SRS SRS RS SRR EEES

* Create menu to manage open windows
Ik KA A AR AR A I AR A A kA A A Ak ARk kA kh A Ak kA k ko hk Ak hk kA ko hkkkhk kA kkk kA kkk ok k ok ok kkk ok kkk
FUNCTION WinMenu ()

STATIC soMenu

IF soMenu == NIL
soMenu := WindowMenu () :new () :create(AppMenu())
ENDIF
RETURN soMenu

The window menu is an instance of the class WindowMenu and receives the return value of
AppMenu() as its parent. This means it is displayed as a submenu of the MDI application
main menu. The user-defined class WindowMenu is derived from XbpMenu:

Khkk kA h ok kA A A A Ak kA AR Ak k ko kkkk kA A A A A Ak Ak k ok ok ok ok h kA kA A A A A Ak hhkhkkhkk kA kkkkk k%

* Menu class for management of open windows
(IEE SRR RS SRR R SRR R R R R R R R R R R
CLASS WindowMenu FROM XbpMenu
EXPORTED:

CLASS VAR windowStack

CLASS METHOD initClass

METHOD init, addItem, dellItem, setItem
ENDCLASS

KKK I I IR AR AR A AR A AR AR KA AR A A A A hhhhkhkhh kA A KA A A Ak hhhhhhhkkkkkhkkkkkkk kK k&%

// Stack for open dialog windows as class variable
//
CLASS METHOD WindowMenu:initClass
::windowStack := {}
RETURN self

Alaska Xbase* + Basic Users Guide 197

The menu system of an application

The class variable :windowStack is declared to reference opened windows. The class method
:initClass(), whose only task is to initialize the class variable with an empty array is also
included. The four methods of the XbpMenu class are overloaded. The method :init() is
executed immediately after the class method :new() terminates. The :inif() method of the
XbpMenu class must also be called in order to initialize the member variables implemented
there:

Ak khkhkkhkhkh kA kkkk kA kkkkkkhkkhkkkkkhkhhkhhkhkhkkhkhkh kA hkhkkkkkkhkhkhkhkhkhkkkkkkhkkk*

// Select a window via callback code block

//

METHOD WindowMenu:init (oParent, aPresParam, lVisible)
::xbpMenu:init (oParent, aPresParam, lVisible)

i:title 1= "~Window"
::activatelItem := ;
{InItem,mp2,obj| SetAppFocus(obj:windowStack[nItem]) }
RETURN self

After the superclass is initialized, the menu title is assigned in :init(). A code block is
assigned to the callback slot :activateltem. This code block sets the focus to the window
whose window title is selected from the menu. The numeric position of the selected menu
item is passed to the code block as the parameter nitem and obj contains a reference to the
menu object itself. Within this code block, the class variable :windowStack is accessed.
swindowStack contains references to all the child windows of the MDI application. The
selected window is passed to the function SetAppFocus() which sets it as the foreground
window.

The last three methods of the window menu class allow menu items to be inserted, changed
or deleted. These methods have the same names as methods of the XbpMenu class but the
parameter passed to the methods are different. Instead of an array with between two and four
elements, the passed parameter is an XbpDialog or XbpCrt object that is to receive focus if
the menu item is selected.

Ak hkhkhhkhhhhhkhk kA XA XA AR A A A A A A Ak k kA kKA A AR A kA A kkhkkk kA Ak khhhkkkkkkkkkhkhkk

// Use title of the dialog window as text for menu item
//
METHOD WindowMenu:addItem(oDlg)

LOCAL cItem := oDlg:getTitle()

AAdd(::windowStack, oDlg)

: :XbpMenu:addItem({cItem, NIL})
IF ::numltems() == 1
::setParent () :insItem(::setParent():numlItems(), {self, NIL})
ENDIF
RETURN self

198 Alaska Xbase " - Basic Users Guide

The menu system of an application

An opened window is passed to the :addltem() method. Within this method, the window is
added to the class variable windowStack and the window title is added as a menu item by
passing it to the :addItem() method of the XbpMenu class. A special characteristic of the
window menu is that it is only displayed in the main menu when at least one child window is
open. Otherwise the "Window" menu item does not appear in the main menu. The window
menu inserts itself as a menu item in its parent (the main menu) after the first time the method
:addltem() is executed.

LR EEEE SRR SRR RS R R SRSt RSttt Rt SRR RRRREREREEE RS

// Transfer changed window title to menu item
//
METHOD WindowMenu:setItem(oDlg)
LOCAL altem, i := AScan(::windowStack, oDlg)

IF i == 0
::addItem(oDlg)
ELSE
altem := ::xbpMenu:getItem(i)
altem{l] := oDlg:getTitle()
::xbpMenu:setItem(i, altem)
ENDIF

RETURN self

AR KK A A AR A A A AR AR A AR A A A AR A A A A A A A AR AR A A A A KA A AR A A A A A Ak kA Ak Ak kA kkhkkh ok ok

// Delete dialog window from window stack and from menu

//
METHOD WindowMenu:delItem(oDlg)
LOCAL 1 := AScan(::windowStack, oDlg)
LOCAL nPos := ::setParent():numltems()-1 // window menu is always
// next to last
IFi>0
::xbpMenu:delItem(1)
ADel (::windowStack, 1)
Asize(::windowStack, Len(::windowStack)-1)
IF ::numItems() == 0
::setParent () :dellItem(nPos)
ENDIF
ENDIF

RETURN self

The :setltem() method is used when the window title of an opened dialog window changes.
This change must also be made in the menu item of the dynamic window menu. The
:delltem() method is called when a dialog window is closed. This method removes the title of
the dialog window from the window menu. If no child windows remain open, the window
menu removes itself from the main menu (the parent) and the menu item "Window" is no
longer visible.

Alaska Xbase** Basic Users Guide 199

Tasks of the Main procedure

14.3.3. Tasks of the Main procedure

After the application window including the menu system has been created in AppSys(),
program execution continues in the Main procedure (assuming there is no other INIT
PROCEDURE). At the start of the Main procedure all conditions required for an error free
run of the GUI application should be checked. For example, this might include testing for the
existence of all required files, creating index files that are not available and initialization of
variables required throughout the application (PUBLIC variables). Retrieving configuration
variables using the command RESTORE FROM should also generally occur within the Main
procedure before the program goes into the event loop. The event loop performs the central
task of the Main procedure. In this loop, events are retrieved and sent on to the addressee.
The following program code is from the MDIDEMO.PRG file and shows some of what needs
to be included in the Main procedure or in functions called by the Main procedure. (Note:
the example is not intended to cover all aspects that might be included in a Main procedure.)

#include "Gra.ch"
#include "Xbp.ch"
#include "AppEvent.ch"
#include "Mdidemo.ch"

khkk kKKK A ARk kh bk Ak Ak kA A A AR A AR R Ak hkkkkkk ok kkk kA kkkkhhkhkkkkhkkkdhkkkkkhkkkkk

* Main procedure and event loop
Ik hkkh kA hkr kA kA A A I A AR A A A A A Ak Ak kA A Ak Ak Ak Ak kkkhkkkhkhk Ak kA bk bk hkkkkkkkkkkdhx
PROCEDURE Main

LOCAL nEvent, mpl, mp2, oXbp

FIELD CUSTNO, LASTNAME, FIRSTNAME, PARTNO, PARTNAME

// Check index files and create them if not existing
IF ! AllFilesExist({ "CUSTA.NTX", "CUSTB.NTX", ;
"PARTA.NTX", "PARTB.NTX" })
USE Customer EXCLUSIVE
INDEX ON CustNo TO CustA
INDEX ON Upper (LastName+Firstname) TO CustB

USE Parts EXCLUSIVE
INDEX ON Upper (PartNo) TO PartA
INDEX ON Upper (PartName) TO PartB

CLOSE DATABASE
ENDIF

SET DELETED ON

// Infinite loop. The programm is terminated in AppQuit ()
DO WHILE .T.
nEvent :- AppEvent(@mpl, €@mp2, €oXbp)
oXbp:handleEvent (nEvent, mpl, mp2)

200 Alaska Xbase* * Basic Users Guide

Tasks of the Main procedure

ENDDO
RETURN

Kk kkkhkk ok kR kA k kA kA Ak kA kA A kA Ak A Ak A Ak kA kA Ak kA kA Ak Ak kA kA kA khkhkkhkkkhkkkkk

* Check if all files of the array 'aFiles' exist
Ak kA kA h kA A Ak ok ok kA Ak kkkkk ok ok ok ok kA kA kkkkkhkkkkkkkhk kA kkkkkhhhk kA kA Ak Ak k&

FUNCTION AllFilesExist(aFiles)
LOCAL lExist := .T., 1:=0, imax := Len(aFiles)

DO WHILE ++i <= imax .AND. lExist
lExist := File(aFiles([i])
ENDDO
RETURN lExist

In this example, the Main procedure simply tests whether all the index files exist and
recreates the index files if any are not found. The existence of the files is tested in the
function AllFilesExist(). When this is complete, the Main procedure enters an infinite loop
that reads events from the queue using AppEvent() and sends them on to the addressee by
calling the addressee's method :handleEvent().

Looking at this implementation, the inevitable question is: Where and how is the program
terminated? The infinite loop in the Main procedure can not be terminated based on its
condition DO WHILE .T.. A separate routine is used to terminate the program. The code for
this routine is shown below:

Ak kA Ak kA A A A A AR A A A AR AR AR A A A Ak ko kA k ko kA kk kA kA hkkhkhkhkkhk kA hkhk kA hkhkhkkkkkkdhkkkkkk

* Routine to terminate the programm
A RS S RS R SRS R SRR SRS SRS RS R R SRS R R R RS R R R R R R R R R R R R R R R SRR R R R EEEE
PROCEDURE AppQuit ()

LOCAL nButton

nButton := ConfirmBox(, ;
"Do you really want to quit ?",
"Quit",
XBPMB_YESNO , ;
XBPMB_QUESTION+XBPMB_APPMODAL+XBPMB_MOVEABLE)

IF nButton == XBPMB_RET_YES
COMMIT
CLOSE ALL
QUIT

ENDIF

RETURN

In the termination routine AppQuit(), confirmation that the program should actually be
terminated is received from the user via the ConfirmBox() function. If the application is to be
terminated, all data buffers are written back into the files and all database are closed using

Alaska Xbase* + Basic Users Guide 201

A DataDialog class for integrating databases

CLOSE ALL. The command QUIT then terminates the program. If the user does not confirm
that the program should be terminated, the infinite loop in the Main procedure is continued.

It is generally recommended that the source code for a GUI application be broken down into
three sections: program start, program execution and program end. The program start is
contained in AppSys() and the program code executed within the Main procedure prior to the
event loop. The event loop itself is the program execution. Often within this loop the program
code that was generated in MenuCreate() during program start up is called by the menu
system. Program termination occurs in the user defined procedure AppQuit(), where
verification by the user can be requested and any data can be saved.

There are only two places in a program where the procedure AppQuit() is called. AppQuit()
is generally called from a menu item and from a callback code block or from a callback
method. The next two lines illustrate this:

oMenu:addItem({"~Quit", {|| AppQuit() } })
oDialog:close := {|| AppQuit() }

In the first line, AppQuit() is executed after a menu item is selected so there must obviously
be a menu containing a menu item to terminate the application. The second line defines a
callback code block for the dialog window to execute after the system menu icon of the
dialog window is double clicked or the "Close" menu item is selected in the system menu of
the window. Generally, the routine for terminating a GUI application should be available in
the menu of the application as well as in response to the xbeP_Close event.

14.3.4. A DataDialog class for integrating databases

An important aspect in programming GUI applications is the connection between the
elements of the dialog window and the DatabaseEngine. The link between a single dialog
element and a single database field is created via the data code block contained in the
instance variable :dataLink of the DataRef class that manages data. This mechanism is
described in the section "DataRef() - The connection between XBP and DBE". A window
generally contains several dialog elements that are linked to different database fields. Special
situations can result that must be considered when programming GUI applications. The
programmer must also remember that such an application is completely event driven. As soon
as there is a menu system in a window, an exactly defined order of program execution is no
longer assured since the user has control of the application rather than the programmer.

The two example applications SDIDEMO and MDIDEMO are provided as examples for GUI
applications under Xbase**. The difficulties that arise in accessing databases are taken into
account in different ways in these two programs. In SDIDEMO, a procedural approach is
implemented and an object oriented style is used in MDIDEMO. Both of these program
examples solve the problem of non-modality of entry fields resulting from the event driven
nature of a GUI application. The problems of non-modality are described by the questions:
"When and how is data input validated?" and "When is data written to the database?". Since
data entry fields can be activated with a mouse click, prevalidation (validation before data is

202

Alaska Xbase* * Basic Users Guide

A DataDialog class for integrating databases

entered) is not possible (after a mouse click an entry field has the input focus). This condition
requires some consideration by programmers who have previously developed only under
DOS without a mouse. Validating data in a GUI application can occur in the framework of
postvalidation (validation after data is entered). The :validate() method in the DataRef class
serves this purpose. If postvalidation fails, the method :undo() of the entry field (Xbase Part)
should be called. In an event driven application, this is the only way to assure that no invalid
data is written into the database.

However, the major task in programming GUI applications is generally not validating the
data, but transferring the input data to the database. In the SDIDEMO and MDIDEMO
example programs, the philosophy is used that the data needs to be written to the database
when the record pointer is changed. All Xbase Parts have their own edit buffer to hold the
modified data and the value to write into the database fields is stored in this edit buffer of
each Xbase Part. For all of the database fields that can be changed within a dialog window,
an Xbase Part must exist to store the value in its edit buffer. The following code fragment
illustrates this:

oXbp := XbpSLE():new(oDlg:drawingArea,, {95,135}, {180,22})
oXbp:bufferLength := 20
oXbp:dataLink := {|x| IIf(x==NIL, LASTNAME, LASTNAME := x) }
oXbp:create() :setData()

In this code, an entry field is created for editing the data in the database field LASTNAME.
Calling the method :setdata() in connection with :create() copies the data from the database
field into the edit buffer of the XbpSLE object. Within a dialog window any number of entry
fields can exist to access database fields. The edit buffer of all entry fields in the dialog
window can be changed at any time (a mouse click in an entry field is sufficient to begin
editing). For this reason, it must be determined when changes to the data in an entry field will
be copied back into the file. There are two approaches: changes to individual data entry fields
are written into the file as soon as the change occurs or all changes from all data entry fields
in a window are written into the file as soon as a "Save" routine is explicitly called or the
record pointer is repositioned.

The second approach is preferred in GUI applications that are designed for simultaneous
access on a network. This approach allows several data entry fields to be changed in a dialog
window without each change being individually copied to the database. In concurrent or
network operation saving each change to the database would require a time consuming lock
and release of the current record. A performance optimized GUI application only locks a
record when it can write several fields to the database or when the record pointer changes.

The problems of validating and saving data into databases is present in every application. The
following code shows several aspects of this problem and is based on the example application
MDIDEMO. In this example application the DataDialog class is used to provide dialog
windows for accessing the DatabaseEngine. A DataDialog object coordinates a
DatabaseEngine with a dialog window. The source code for this class is contained in the file
DATADLG.PRG.

Alaska Xbase* * Basic Users Guide 203

A DataDialog class for integrating databases

An example of an input screen based on DataDialog, is shown in the following illustration:
Costomer No-3
rgam

IB vemm‘

IC lw(;;;il'li

ik Phoos. [Simesiziz
lée\@l‘e“.‘Hl"’ : .; o :F&"lv3i9/555:3'434 - ~

Input screen for customer data

The DataDialog class is derived from XbpDialog. It adds seven new instance variables and
eleven additional methods for transferring data from a database to the dialog and vice versa.
Three of the instance variables are for internal use only and are declared as PROTECTED:.
The four methods :init(), :create(), :configure() and :destroy() perform steps in the "life
cycle" of a DataDialog object:

#include "Gra.ch"
#include "Xbp.ch"
#include "Dmlb.ch"
#include "Common.ch"
#include "Appevent.ch"

kkhkhkhkhkhkh kA hkkhkkkkkhkh kA hkkkkkkkhkhkhkhkkhkhkkhhkkkkkhkkkhkkkkkkhkkkhkhkhkxkx

* Class declaration
ok kAR AR A Ak khhkhkkkk kA A A A AR A A A Ak ok khhhkkh ok kk kA Ak hkkkhkkkkkkkkkkkkkkkkdkkkhk

CLASS DataDialog FROM XbpDialog

PROTECTED:
VAR appendMode // Is it a new record?
VAR editControls // List of XBPs for editing data
VAR appendControls // List of XBPs enabled only
// during APPEND
EXPORTED:
VAR area READONLY // current work area
VAR newTitle // code block to change window title
VAR contextMenu // context menu for data dialog
VAR windowMenu // dynamic window menu in

// application window

204 Alaska Xbase - * Basic Users Guide

A DataDialog class for integrating databases

METHOD init // overloaded methods
METHOD create

METHOD configure

METHOD destroy

METHOD addEditControl // register XBP for edit

METHOD addAppendControl // register XBP for append

METHOD notify // process DBO message

METHOD readData // read data from DBF

METHOD validateAll // validate all data stored in XBPs

METHOD writeData // write data from XBPs to DBF

METHOD isIndexUnique // check index value for uniqueness
ENDCLASS

The protected instance variable :appendMode contains the logical value .T. (true) only when
the phantom data record (record number LastRec()+1) is current. The other two protected
instance variables :editControls and :appendControls are arrays containing lists of Xbase
Parts that can modify data. In order to create a data dialog, editable XBPs are required as
well as Xbase Parts that can not edit data but display static text or boxes (XbpStatic objects).
The instance variable :editControls contains a list of references to those XBPs in the child
list (all XBPs that are displayed in the dialog window are contained in this list) that can be
edited.

The task of the :appendControls instance variable is similar and contains a list of XBPs that
are only enabled when a new record is appended. In all other cases, these XBPs are disabled.
They only display data and do not allow the data in them to be edited. This is useful for
editing database fields that are contained in the primary database key which should not be
changed once they are entered in the database. :editControls and :appendControls are both
initialized with empty arrays. This is done in the :init() method after it calls the :inif() method
of the XbpDialog class as shown below:

KAk kkhkk kA Ak Ak ok kA khkh ok ok k ko ko ko kA kAR A Ak k ok h ok h ok kA kA AR A A A Ak d ok hk kA kA AKX Ak Kk kk k%

* Initialize data dialog
IR R EE RS SRR R R R R R R R R R R R R R R R
METHOD DataDialog:init(oParent, oOwner , ;

aPos , aSize , ;

aPParam, lVisible)

DEFAULT 1lVisible TO .F.
::xbpDialog:init (oParent, oOwner, ;

aPos , aSize , ;
aPParam, lVisible)

::area := 0

: :border = XBPDLG_THINBORDER
::maxButton HER
::editControls HERR S

: :appendControls = {}

Alaska Xbase* * Basic Users Guide 205

A DataDialog class for integrating databases

: :appendMode = LF.
::newTitle {lobj| obj:getTitle() }

1

RETURN self

All instance variables are set to values with the valid data type in the :init() method. Only the
instance variables :border and :maxButton change the default values assigned in the
XbpDialog class. The window of a DataDialog object is fixed in size and can not be
enlarged. The method has the same parameter list as the method :new() and :init() in the
XbpDialog class. This allows it to receive parameters and simply pass them on to the
superclass. The DataDialog is different in that it is created as hidden by default. This is
recommended when many XBPs will be displayed in the window after the window is
generated. The construction of the screen with the method :show() is faster if everything can
be displayed at once after the XBPs have been added to the dialog window.

The instance variable :newTitle must contain a code block that the DataDialog object is
passed to. For this reason a code block is defined in the :init() method, but it must be
redefined later. This code block changes the window title while the dialog window is visible.
The default code block is assigned to the instance variable in the :init() method to ensure that
the instance variable has the correct data type.

The next method in the "life cycle" of a DataDialog object is :create(). A database must be
open in the current work area prior to this method being called. A DataDialog object
continues to use the work area that is current when the :create() method is executed:

Ak hkhkkhkhkhkhkhhkhkdk kA d A A A Ak ok hhhhhhkkk kA kXA AR A A Ak hkhkkkk kA kA kkkhkkkkxkhhkkkhhk

* Load system resources
* Register DataDialog in current work area
kkkhkhkhkhhhhhhk kA XA A A A Ak hhhhkhhkhhkhkkkkkkkhkhhhhhhhhkhhhkrkkhkkkkkkhkkkkkkhkkhk
METHOD DataDialog:create(oParent, oOwner , ;
aPos , aSize , ;
aPParam, lVisible)

::xXbpDialog:create(oParent, oOwner , ;
aPos , aSize , ;

aPParam, lVisible)

: :drawingArea:setColorBG(GRA_CLR_PALEGRAY)

:appendMode := Eof ()
::area := Select()
::close = {Impl,mp2,obj| obj:destroy() }

::setDisplayFocus := {|mpl,mp2,0bjl| ;
DbSelectArea(obj:area) }

DbRegisterClient (self)

206 Alaska Xbase * Basic Users Guide

A DataDialog class for integrating databases

RETURN self

The most important task of :create() is requesting system resources for the dialog window.
This occurs when the method of the same name in the superclass is called and the parameters
are simply passed on to it. The background color for the drawing area (:drawingArea) of the
dialog window is then set. The call to :setColorBG() also defines the background color for all
XBPs later displayed in the dialog window. This affects all XBPs that have a caption for
displaying text. This simplifies programming because the background color of the individual
XBPs with captions do not have to be set separately. Generally when the system colors
defined in the system configuration are to be used :setColorBG() can not be called.

The lines that follow are important because they link the DataDialog object and the work
area. First, whether the pointer is currently at Eof() is determined, then Select() determines
the number of the current work area. Two code blocks are assigned to the callback slots
:close and :setDisplayFocus. The method :destroy() (described below) is called after the
xbeP_Close event. As soon as the DataDialog object receives focus, the code block in
:setDisplayFocus is executed. In this code block, the work area managed by the DataDialog
object is selected as the current work area using DbSelectArea(). This means that if the
mouse is clicked in a DataDialog window, the correct work area is automatically selected.

The call to DbRegisterClient() is critical for the program logic. This registers the DataDialog
object in the work area so that it is automatically notified whenever anything in the work area
changes. This includes notification of changes in the position of the record pointer. When the
record pointer changes, the new data must be displayed by the XBPs that are listed in the
instance variable :editControls. This is done using the method :notify() which is described
later after the remaining methods in the DataDialog "life cycle" are discussed. The method
:configure() is provided to handle changes in the work area managed by the DataDialog
object and is shown below:

Ak hk kK kAKX KA KA KRk A A kA Ak bk k kA kb Ak ok Ak kA kA Xk k Ak k ok khkk ok Ak kA kkkkhkkhkk ok k ok

* Configure system resources
* Register data dialog in new work area if necessary
Ak hkhhkhk kA Ak A hkhkhk kA hkkkhhhk kA A Ak Ak kkhhhhhhhhk kA kA Ak Ak khhkhhkhhkkkkkkkkkhkkkkkx

METHOD DataDialog:configure(oParent, oOwner , ;

aPos , aSize , ;
aPParam, lVisible)
LOCAL lRegister := (::area <> Select())

::xbpDialog:configure(oParent, oOwner , ;
aPos , aSize , ;
aPParam, 1lVisible)

IF 1lRegister

(::area)->(DbDeRegisterClient(self))

ENDIF

::area := Select ()

Alaska Xbase* * Basic Users Guide 207

A DataDialog class for integrating databases

: :appendMode := Eof()

IF 1lRegister
DbRegisterClient (self)
ENDIF

RETURN self

A DataDialog object always manipulates the current work area. Because of this, the method
:configure() compares the instance variable :area to Select() to determine whether the current
area has changed. If it has changed, the object is deregistered in the old work area and
registered in the new area. In addition, the system resources for the dialog window are also
reconfigured in the call to the :configure() method of the superclass.

The final method of the DataDialog life cycle is :destroy(). This method closes the database
used by the DataDialog object and releases the system resources. The instance variables
declared in the DataDialog class are reset to the values assigned in the method :init():

Khkhk Xk hkkh kb dkkhkkkkhhk ko kkhkkhhkkkkhkhkkhkkkkhkk ok khhkkhkhkkkhkhkkhhkhkhkhkhkkkkok &

* Release system resources and unregister data dialog from work area
Ahkhkhkhkhkhkkhkkhkhkhkhkhkhkhkkhkhkhhkhkhkhhhkh bk h bk hkhhhk bk h Ak hkhk kA hkhkhkhkkhkdkkhdhkhkhhkhkdkkkkk

METHOD DataDialog:destroy ()

::writeData()
::hide()

(::area)->(DbCloseArea())

IF ! Empty(::windowMenu)
::windowMenu:delItem(self) // delete menu item in window menu

::windowMenu := NIL
ENDIF
IF ! Empty(::contextMenu)
::contextMenu:cargo := NIL // Delete reference of data
::contextMenu := NIL // dialog and context menu
ENDIF
::xbpDialog:destroy () // release system resources
::Area := 0 // and set instance variables
: :appendMode = JF. // to values corresponding to
:editControls = {} // :init () state
::appendControls := {}
::newTitle := {lobjl| obj:getTitle() }

RETURN self

208 Alaska Xbase* * Basic Users Guide

A DataDialog class for integrating databases

The method :writeData() is called in :destroy() in order to write all the data changes into the
database before it is closed using DbCloseArea(). After the database is closed, the
DataDialog object is implicitly deregistered from the work area and a call to
DbDeRegisterClient() is not necessary. If a menu object is contained in the instance variable
:windowMenu, the DataDialog object is removed from the list of menu items in this menu
(the WindowMenu class is described in a previous section). The instance variable
:contextMenu can contain a context menu that is activated by clicking the right mouse button.
This mechanism is described in a later section. It is essential that the reference to the
DataDialog object in the instance variable :cargo of the context menu be deleted because the
method :destroy() is expected to eliminate all references to the DataDialog object. If a
DataDialog object remains referenced anywhere, whether in a variable, an array, or an
instance variable, it will not be removed from memory by the garbage collector. This
concludes the discussion of the methods that perform tasks in the "life cycle” of a DataDialog
object.

One of the most important method of the DataDialog class is the :notify() method. This
method is called whenever something is changed in the work area associated with the object.
An abbreviated version of this method highlighting its essential clements is shown below:

IR SRR SRR R R EE R RS S R R R SRR EEEEEEEESS
* Notify method:

* - Write data to fields prior to moving the record pointer

* - Read data from fields after moving the record pointer

khk kKA KA A AR A KRR AR A AR Ak bk h ok ok ko kk ko kA Ak hhhhhhhkhkkkk kA A khhhhhhkhkkkkkkhkk

METHOD DataDialog:notify(nEvent, mpl, mp2)

IF nEvent <> xbeDBO_Notify // no notify message
RETURN self // ** return **

ENDIF

DO CASE

CASE mpl == DBO_MOVE_PROLOG // record pointer is about
::writeData() // to be moved

CASE mpl == DBO_MOVE_DONE .OR. ; // skip is done

mpl == DBO_GOBOTTOM .OR. ;
mpl == DBO_GOTOP
::readDatal()

ENDCASE
RETURN self

Calling the function DbRegisterClient() in the :create() method of the DataDialog object
registers the object in the work area it uses. As soon as anything changes in this work area,
the :notify() method is called. For record pointer movement, this method is called twice. The
first time the DataDialog object receives the value represented by the constant
DBO_MOVE_PROLOG (defined in the DMLB.CH file) as the mp] parameter. This is a

Alaska Xbase* * Basic Users Guide 209

A DataDialog class for integrating databases

signal that means "Warning the record pointer position is about to change." When it receives
this message, the DataDialog object executes the method writeData() which writes the data
of the current record into the database. In the second call to :notify(), the object receives the
value of the constant DBO_MOVE_DONE. This message tells the object "Ok, the pointer
has been changed." In response to this message, the object executes the :readData() method
which copies the fields of the new record into the edit buffers of the XBPs that are in the data
dialog's :editControls instance variable. This allows the data in the new record to be edited.

The :notify() method provides important program logic for the DataDialog object. In this
method, the DataDialog object reacts to messages sent by the work area it uses. This method
is only called after the object is registered in the work area using DbRegisterClient(). Or
more precisely, it is only called when the object is registered in the database object (DBO)
that manages the work area (a DBO is automatically created when a database is opened).
Based on the event passed, the :notify() event determines whether a record should be read
into XBPs or whether the data in the XBPs should be written into the database. The
DataDialog object does not directly manage the data but does manage the XBPs contained in
the array :editControls. Adding XBPs to this array is done using the method
:addEditControl().

Ahk KA AKX A IR A I AR KA AR AR A A AR A kA Ak Ak Ak hk kA ko kA hkhkhk bk khk kA Ak kk kA hkhk kA A dhhkkx k%

* Add an edit control to internal list
KA A A A A AR A AR A A A A A AR A AA AR A A Ak ok k ok kokkk ko kkkkkhkkkkkkhkkk Ak k kA khkhkkkkkkkkxk

METHOD DataDialog:addEditControl(oXbp)

IF AScan(::editControls, oXbp) == 0
AAdd(::editControls, oXbp)
ENDIF

RETURN self

hhkhkhkhkkk kA kA kkkkkhkhkkhkhkhhhhkk kA Ak Ak Ak hhkhhkhkhh kA kkkhkkkkkkhkhkkkhkhhkhkkkkkkk k%

* Add an append control to internal list
hhkkhkkhkhkhkhkhkhkhkkhkdkhkhhhkhhhkdhkhh kb kA bk k Ak Ak Ak kA A Ak ko k ko kkhkhkhkhkkhkkhk kA dkkkk %

METHOD DataDialog:addAppendControl(oXbp)
IF AScan(::appendControls, oXbp) ==
AAdd(::appendControls, oXbp)

ENDIF
RETURN self

The two methods :addEditControl() and :addAppendControl() are almost identical. One adds
an Xbase Part to an array stored in the instance variable :editControls and the other adds an
Xbase Part to :appendControls. When a DataDialog object executes the method :readData()
or :writeData(), it sequentially processes the elements in the -editControls array and sends
each element (each Xbase Part) the message to read or write its data. A code fragment is
included below to illustrate how Xbase Parts can be added to the window of a DataDialog
object and to the :editControls instance variable if appropriate. The variable oDlg references
a DataDialog object.

210

Alaska Xbase " - Basic Users Guide

A DataDialog

class for integrating databases

oXbp

oXbp:
oXbp:
oXbp:

oXbp

oXbp:
oXbp:
oXbp:
oXbp:

oDlg

:= XbpStatic():new(oDlg:drawingArea,, {5,135}, {80,22})
caption := "Lastname:" // static text is stored
options := XBPSTATIC_TEXT_RIGHT // only in the child list
create()

!

:= XbpSLE() :new(oDlg:drawingArea,, {95,135}, (180,22})

bufferLength := 20 // entry field linked to

tabStop := .T. // database

dataLink := {ix| IIf(x==NIL, LASTNAME, LASTNAME := x) }
create() :setData()

:addEditControl (oXbp) // adds new XBP to :editControls

The Xbase Parts appear in the drawing area of a dialog window, so oDIg:drawingArea must
be specified as the parent. The code fragment creates an XbpStatic object to display the text
"Lastname:" and an XbpSLE object to access and edit the database field called LASTNAME.
Passing the XbpSLE object to the method :addEditControl() adds this Xbase Part to the
:editControls array. In the child list of the DataDialog object there are now two XBPs but the
:editControls array contains only the XBP for data that can be edited. The methods
:readData(), :validateAll() and :writeData() assume that all the Xbase Parts that can edit data
are included in the reditControls array. The program code for :readData() is shown below:

KA Ak A Ah kA KA A Ak kA Ak hkhkh ko h kA AR A A A A A Ak khkkhkhk ok ok ok ok kA Ak Ak kk ok ok kkk kA Ak kkkhhk

* Read current record and transfer data to edit controls
kA KKk A A AR Ak kA A AR Ak Ak kA Ak Ak A Ak Ak Ak Ak kA ko kA k ko hk kA hk Ak Ak k kA Xk kA kA Ak Ak k kXA kA khkkk k%

METHOD DataDialog:readData()

LOCAL i, imax := Len(::editControls)

FOR i:=1 TO imax // Transfer data from file
::editControls[i] :setData() // to XBPs

NEXT

Eval(::newTitle, self) // Set new window title

IF Eof() // enable/disable XBPs
IF ! ::appendMode // active only during

imax := Len(::appendControls) // APPEND
FOR 1i:=1 TO imax //
::appendControls([i] :enable() // Hit Eof(), so
NEXT // enable XBPs
ENDIF
::appendMode := .T.

ELSEIF ::appendMode // Record pointer was
imax := Len(::appendControls) // moved from Eof() to
FOR i:=1 TO imax // an existing record.

::appendControls(i]:disable() // Disable append-only
NEXT // XBPs
::appendMode := .F.

Alaska Xbase* * Basic Users Guide 211

A DataDialog class for integrating databases

ENDIF

RETURN

The :setData() method in the first FOR...NEXT loop causes all the XBPs referenced in the
instance variable :editControls to re-read their edit buffers by copying the return value of the
data code block contained in :dataLink into their edit buffer. The remaining code just enables
and disables the XBPs in the :appendControls list. In addition to reading the data in the
database fields, this method is the appropriate place to enable or disable those Xbase Parts
that should only be edited when a new record is being appended.

The counterpart of :readData() is the :writeData() method. In this method, the data in the
edit buffer of each Xbase Part listed in :editControls is written back to the database. This
method involves relatively extensive program code, because it performs record locking and
identifies whether a new record should be appended.

dhkkkkkkkhkhkkkkkkkhkkkhkhkdkhkkkkkkkhkhhkhhhdhddhhhhhhkhhhhkbdkkkkkhkkhhkkhkhkkkkx

* Write data from edit controls to file
hkhkhkkhkhkk Ak hkhk kb hkhkhrhkdkhkh bk hkhhkhkhkhhkkhkhhkhkhkhkhkdkhhkdhh bbb d bbbk bk hkhhkdkhkhkhhkkdkkk ki
METHOD DataDialog:writeData ()

LOCAL i, imax

LOCAL lLocked HET S // Is record locked?
1Append = \F. , // Is record new?
aChanged := {} , ; // XBPs containing changed data
nOldArea := Select() // Current work area
dbSelectArea(::area)
IF Eof() // Append a new record
IF ::validateAll() // Validate data first
APPEND BLANK
1Append = .T.
aChanged :- ::editControls // Test all possible changes
lLocked := ! NetErr() // Implicit lock
ELSE
MsgBox ("Invalid data") // Do not write invalid data
DbSelectArea(nOldArea) // to new record
RETURN .F. // *** RETURN ***
ENDIF
ELSE
imax := Len(::editControls) // Find all XBPs containing
FOR i:=1 TO imax // changed data
IF ::editControls([i]:changed
AAdd (aChanged, ::editControls[i])
ENDIF
NEXT
IF Empty(aChanged) // Nothing has changed, so

Alaska Xbase " - Basic Users Guide

A DataDialog class for integrating databases

DbSelectArea(nOldArea) //
RETURN .T. //
ENDIF

lLocked := DbRLock(Recno()) //
ENDIF

IF ! lLocked

no record lock necessary
% RETURN ***

Lock current record

MsgBox("Record is currently locked")

DbSelectArea(nOldArea) //
RETURN .F. //
ENDIF
imax := Len(aChanged) //
FOR i:=1 TO imax //

IF ! lAppend
IF ! aChanged[i]:validate()

aChanged[i] :undo() //
LOOP //
ENDIF //

ENDIF
aChanged([i] :getData() //
NEXT //
DbCommit () //
DbRUnlock(Recno()) //
IF ::appendMode //
imax := Len(::appendControls)

FOR i:=1 TO imax
::appendControls(i] :disable()

NEXT

::appendMode := .F.

IF ! Empty(::contextMenu)
::contextMenu:disableBottom()
: :contextMenu:enableEof ()
ENDIF
ENDIF

DbSelectArea(nOldArea)

RETURN .T.

Record lock failed
% RETURN ***

Write access 1s necessary
only for changed data

invalid data !
undo changes and validate
next XBP

Get data from XBP and
write to file

Commit file puffers
Release record lock

Disable append-only XBPs
// after APPEND

Appending a new record requires special logic in the :writeData() method of the DataDialog

object. A special empty record (the phantom record) is automatically available when the
pointer is positioned at Eof(). If the pointer is positioned at Eof(), the method :readData()
has copied "empty" values from the database fields into the XBP edit buffers for all of the

Alaska Xbase* + Basic Users Guide

213

A DataDialog class for integrating databases

XBPs listed in the instance variable :editControls. Because of this, all XBPs contain valid
data types. But there is no guarantee that valid data is also contained in the edit buffers of
each XBP. This means that data validation must be performed before the record is even
appended. Since there is not yet a record, all the data to be saved is found only in the edit
buffer of the corresponding Xbase Parts. The method :validateAll() is called before a new
record is appended which is to receive data from the edit buffers of the Xbase Parts.

Data validation is especially important when a new record is appended because no previously
valid data exists to allow the changes to the individual edit buffers to be voided. For records
that are being edited, the method :undo() allows changes to the values in the edit buffers to be
voided. But this approach assumes there is an original field value that is valid. This is only
true if the record being edited existed prior to editing. When a record is appended, the
original values are "empty" values which are probably not valid.

In :writeData(), this situation is handled by calling the method :validateAll() before the new
record is appended to the file using APPEND BLANK. If data validation fails on even one
field, a message box containing the text "Invalid data" is displayed and a new record is not
appended. The invalid data remains in the edit buffers of the corresponding Xbase Parts
(ceditControls) and can be corrected by the user. When an existing record is edited, data
validation occurs individually for each Xbase Part. If the :validate() method of an XBP
returns the value .F. (false) (indicating invalid data), the :undo() method of the XBP is
executed which copies the original, valid data back into the edit buffer.

If any XBPs listed in :editControls have been changed, the record is locked using
DbRLock(). After validation, data from the edit buffers is written into the database by calling
the method :getData(). The function DbCommit() ensures that data in the file buffers are
written into the database. Finally the record lock is released.

The :writeData() method handles the problems of data validation and appending records as
they occur in an event driven environment. This process is controlled by the mouse or rather
by the user who causes the mouse clicks. Even though :writeData() is called from only one
place in the :notify() method, it is impossible to foresee when this method will be called.
While it is clear that it is called when the record pointer moves it is not possible to predict
which record will be current when the method :writeData() is called. The special case occurs
when the pointer is located on the phantom record. In this case data validation cannot be
reversed using the ‘undo() method because no previously validated data exists. For this
reason, all data must be validated before a new record can be appended. The method which
checks that all data is valid is called :validateAll() and is shown below:

FRAA KA AR ARk hkhkh bk khk ok k kA A A Ak ok kk ok hkhhh ok hkk kA Ak Ak kkkkhhhkhkhkkkkhkhkkhkkhkhkkkxkk

* Validate data of all edit controls
* This is necessary prior to appending a new record to the database
KA KA A A A A kA Ak ok sk k ok ok ko kA Ak A AR A AR AR A AR KR KA AR AAA A AR A A ARk ok ok hk kA Ak k ok kkkok k%
METHOD DataDialog:validateAll ()

LOCAL 1 := 0, imax := Len(::editControls)

214

Alaska Xbase * Basic Users Guide

A DataDialog class for integrating databases

LOCAL 1lvalid :

I

.T.

DO WHILE ++1 <= imax .AND. lvalid
1valid := ::editControls[i]:validate()
ENDDO

RETURN 1lvalid

The method consists only of a DO WHILE loop that is terminated as soon as the XBP
:validate method signals invalid data. The method :validate() is executed for all XBPs listed
in reditControls. This method always returns the value .T. (truc) unless there is a code block
contained in the instance variable :validate. If a code block is contained in this instance
variable, it is executed and receives the XBP as the first parameter. This code block performs
data validation and returns .T. (true) if the data is valid.

Special data validation is needed for the primary key in a database. The primary key is the
value in the database that uniquely identifies each record. There is always an index for the
primary key. The method :isIndexUnique() (shown below) tests whether a value already
exists as a primary key in an index file of the database. This method demonstrates an
extremely important aspect for the use of DataDialog objects (more precisely: for the use of
the function DbRegisterClient()):

KK KKK A A KA AR A A AR AR A A A A A A AR AR A AR kAR A A Ak hhhhkkk kA kA kA Ak kkkkkhk ok ok kk ok kk ok
* Check whether an index value does *not* exist in an index
Ak hkkk kA ARk Ak kA A ARk kA kAR AR AR AR A Ak Ak ko kkk ok k kA kA A A A Ak hkkkkhkkkkkkkkkkkhkkkkk

METHOD DataDialog:isIndexUnique(nOrder, xIndexValue)
LOCAL nOldOrder := OrdNumber()

LOCAL nRecno := Recno()
LOCAL lUnique := LF.
DbDeRegisterClient (self) // Suppress notification from DBO

// to self during DbSeek() !!!
OrdSetFocus(nOrder)

1Unique := .NOT. DbSeek(xIndexValue)

OrdSetFocus (nOldOrder)
DbGoTo (nRecno)

DbRegisterClient(self)

RETURN lUnique

The functionality of the :isIndexUnique() method is very limited. All it does is search for a
value in the specified index and return the value .T. (true) if the value is not found. An
important point shown here is that the DataDialog object executing the method must be
deregistered in the work area. It was initially registered in the work area by the method

Alaska Xbase** Basic Users Guide 215

DataDialog and data entry screens

:create(), causing the method :notify() to be called every time the record pointer changes. In
this case, it is a method of the DataDialog object changing the pointer by calling DbSeek(). If
the DataDialog object were not deregistered, an implicit recursion would result since each
change to the pointer via DbSeek() calls the method :notify(). For this reason,
DbDeRegisterClient() is used to deregister the DataDialog object prior to the call to
DbSeek(). It is again registered in the work area using DbRegisterClient() after DBSeek().

In summary, the DataDialog class solves many problems which must be considered when
programming GUI applications that work with databases. Record pointer movements are
easily identified in the method :notify() that is automatically called when the DataDialog
object is registered in the current work area using the function DbRegisterClient(). Before the
record pointer is moved, a DataDialog object copies the changed data in :editControls back
into the database. After the record pointer is changed, a DataDialog object displays the
current data. Data validation occurs prior to data being written into the database either by a
new record being appended or existing data being overwritten. Whether new data is being
saved or existing data modified is determined by the DataDialog object.

14.3.5. DataDialog and data entry screens

Objects of the DataDialog class described in the previous section are appropriate for
programming data entry screens in GUI applications. Each input screen is an independent
window that is displayed as a child of the application window. In each child window (input
screen) Xbase Parts are added to edit the database fields. Because they are separate windows,
it is recommended that each entry screen be programmed in a separate routine. The tasks of
this routine include opening all databases required for the entry screen, creating the child
window (DataDialog), and adding the Xbase Parts needed for editing the database fields to
the entry screen. In the example application MDIDEMO, two entry screens are programmed,
one for customer data and one for parts data. The process of creating the data entry screen is
the same in both cases. Sections of the program code from the file MDICUST.PRG are
discussed below to illustrate various aspects significant when programming data entry
screens:

Kk kkhkhkhkkhhhhhhkhh kA kA A A Ak bbbk Ak hh kA A kAR R AR AR AR A AR ARk Rk kA kA Ak kkk kA k k%

* Customer Dialog
Ihkhkhkhkhkhkhkhhkhkhhkhhkhkhhkhkhrhhhhhkhhhkhhhhkhkhbkhh kA bk h ko bk khkhkhkhkhkh bk hkhkhkdkkdkkkk
PROCEDURE Customer(nRecno)

LOCAL oXbp, oStatic, drawingArea, oDlg

FIELD CUSTNO, MR_MRS, LASTNAME, FIRSTNAME, STREET, CITY, ZIP , ;

PHONE , FAX , NOTES , BLOCKED , TOTALSALES
IF ! OpenCustomer(nRecno) // open customer database
RETURN

ENDIF

216

Alaska Xbase* * Basic Users Guide

DataDialog and data entry screens

oDlg := DataDialog() :new(RootWindow():drawingArea ,, ;
{100,100}, {605,315},, .F.)

oDlg:title := "Customer No: "+ LTrim(CUSTNO)

oDlg:icon := ICON_CUSTOMER

oDlg:create()

/* L0 x/

The Customer() procedure creates a new child window in the MDI application where
customer data can be edited. LOCAL variables are first declared to reference the Xbase Parts
created and all of the database fields are identified to the compiler as field variables. Before
the child window (DataDialog) is created, the required database(s) must be open. This occurs
in the function OpenCustomer() which returns the value .F. (false) only if the customer
database could not be opened. Opening the database might fail because another workstation
has the file exclusively open or the file is simply not found. (Note: testing for the existence of
files should have already been done at startup in the Main procedure).

When the required file(s) can be opened, the dialog window is created. This is done using
DataDialog class method :new() which generates a new instance of the DataDialog class. The
parent of the new object is the drawing area (:drawingArea) of the application window
created in AppSys() and returned by the user-defined function RootWindow(). As soon as the
child window is created, the Resource ID for an icon must be entered into the instance
variable :icon. This icon is displayed within the application window when the child window
is minimized. In this example, the #define constant ICON_CUSTOMER is used. An icon is
declared in a resource file and must be linked to the executable file using the resource
compiler ARC.EXE. If no icon ID is specified for a child window, the window contents in
the range from point {0,0} to point {32,32} are used as the icon when the window is
minimized. This means everything visible in the lower left corner of the child window up to
the point {32,32} appears as the symbol for the minimized child window.

In the example program MDICUST.PRG, only the CUSTOMER.DBF database file needs to
be opened. It is important for the customer database to be reopened each time the procedure
Customer() is called. This is shown in the program code of the function OpenCustomer():

KAk A hh kAR Ak kA kA khkkkkk kA Ak Ak kkkkhhhhhhh ok kA kA hhhhhhhhhkkdkkhkkkxkkkkkkkx

* Open customer database
PR R R SRR E R RS RS RS S E RS SRR R SRS RS ERRERRSRA R SRR SRS RR SRR RRR R SRR SRREREnRS
FUNCTION OpenCustomer(nRecno)

LOCAL nOldArea := Select(), lDone := .F.

USE Customer NEW
IF ! NetErr()
SET INDEX TO CustA, CustB
IF nRecno <> NIL
DbGoto(nRecno)
ENDIF
1Done := .T.
ELSE

Alaska Xbase* + Basic Users Guide 217

DataDialog and data entry screens

DbSelectArea(nOldArea)
MsgBox ("Database can not be opened")
ENDIF

RETURN 1Done

Each instance of the DataDialog class (each data entry screen) manages its own work area. If
the Customer() procedure is executed 10 times, 10 data entry screens are created for customer
data and the CUSTOMER.DBEF file is opened 10 times. This rule is standard for event
oriented GUI applications: Each dialog opens its own database. This requires some
consideration for programmers coming from DOS procedural programming, since the same
approach is not appropriate under DOS because of the 255 file handle limit. This limit does
not exist under a 32bit operating system. Access to a single database file from several dialogs
does require that protection mechanisms be implemented in the Xbase* application. The
mechanisms for locking records or files is sufficient under Xbase* so that when the program
allows simultaneous access on a network, it will also handle the file being opened multiple
times within a single application.

Each call to OpenCustomer() opens the customer database in a new work area and the
method DataDialog:create() registers the dialog window in this new work area. From this
point on, the DataDialog object is notified about each change in the work area (via the
method :notify()) and can be assigned the appropriate XBPs (via :editControls) so that they
can automatically be handled by the DataDialog methods. (Note for Clipper programmers:
the expression USE Customer NEW is allowed in Xbase* without specifying an alias name.
If a database is opened multiple times, Xbase* provides a unique alias name formed from the
file name and the number of the current work area).

When the database is open and the DataDialog (the child window) is created, the most
important processes for programming a data entry screen are nearly complete. Xbase Parts
must still be added to the dialog window. These include both XBPs that contribute to the
visual organization of the data entry screen (borders and text) and XBPs that allow access to
database fields via :dataLink. This second group is primarily made up of objects from the
classes XbpSLE, XbpCheckBox and XbpMLE. XbpSLE objects provide single line data
entry fields, XbpCheckBox objects manage logical values and XbpMLE objects provide
multiple line data entry fields that allow memo fields to be edited. Objects of the classes
XbpSLE, XbpCheckBox and XbpMLE are sufficient to program the sections of data entry
screens where database fields are edited.

Boxes that are displayed by XbpStatic objects are used to provide visually organization of
data entry screens. Entry fields are not only visual separated when they appear in a box, but
the fields can also be grouped in the program logic. The following program section shows
another example of code defining a part of a data entry screen.

218

Alaska Xbase* * Basic Users Guide

DataDialog and data entry screens

This example is a continuation of the Customer() procedure:

// Get drawing area from dialog
drawingArea := oDlg:drawingArea

oStatic := XbpStatic():new(drawingArea ,, {12,227}, {579,58})
oStatic:type := XBPSTATIC_TYPE_GROUPBOX
oStatic:create()

In the above sample, the drawing area (:drawingArea) of the dialog window is retrieved and
passed as the parent for the dialog elements to be displayed in the window. The first dialog
element is an XbpStatic object responsible for displaying a group box. This box displays text
(the caption) in the upper left corner. A group box is used for grouping data entry fields and
acts as the parent for all the Xbase Parts which are displayed within the group box. In other
words: the parent for a group box is the :drawingArea and the parent for the Xbase-Parts
displayed within the group box is the XbpStatic object representing the box. For this reason
the XbpStatic object is referenced in the variable oStatic and is used as the parent in the
example of creating data entry fields shown below:

oXbp := XbpSLE():new(oStatic,, {95,135}, {180,22})
oXbp:bufferLength := 20
oXbp:dataLink := {|x| IIf(x==NIL, Trim(LASTNAME), LASTNAME := x) }

oXbp:create() :setDataf()

oDlg:addEditControl (oXbp) // register Xbp as EditControl

In the above sample, a data entry field is created for display within a group box (the parent of
the data entry field is oStatic). The XbpSLE object accesses the database field NAME and
the length of the edit buffer is limited to the length of the database field. The field
LASTNAME has 20 characters in the example. A general incompatibility between database
fields and XbpSLE objects is handled in the :dataLink code block. When data is read from
the database field, the padding blank spaces are included. If the data is copied directly from
the field LASTNAME into the edit buffer of the XbpSLE object, 20 characters are always
included in the edit buffer even for a name such as "Smith" that is only five characters long.
The blank spaces stored in the database field are copied into the edit buffer of the XbpSLE
object. The result is that the edit buffer of the XBP object is already full and characters can
only be added to the edit buffer in "Overwrite" mode. An XbpSLE object considers blank
spaces as fully valid characters and to prevent these problems, the blank spaces at the end of
the name (trailing spaces) are explicitly removed using Trim() when the data is read from the
database field LASTNAME within :dataLink.

An XbpSLE object can only edit values in its edit buffer that are of "character” type. The
maximum number of characters is 32KB. Values of numeric or date type must be converted
to a character string when copied into the edit buffer of an XbpSLE object and converted
back to the correct type before being written into the database field. This must be done in the
data code block contained in :dataLink.

Alaska Xbase* * Basic Users Guide 219

Program control in dialog windows

Examples for code blocks which perform type conversions are shown below:

oXbp:dataLink := {[x| IIf(x==NIL, Transform(FIELD->NUMERIC, "@N"), ;
FIELD->NUMERIC := Val(x)) }
oXbp:datalLink := {|x| IIf(x==NIL, DtoC(FIELD->DATE), ;
FIELD->DATE := CtoD(x)) }

When database fields are read into the edit buffer of an XbpSLE object blank spaces must be
deleted and numeric and date values must be converted to character strings. When the
modified data is saved to the database fields, values for date and numeric fields must again be
converted to the correct data type. This task is performed by the data code block assigned to
the instance variable :dataLink.

Another task of the data code block contained in :dataLink occurs when more than one file is
required for the data entry screen (the DataDialog). In this case, fields from several databases
are edited in a single data entry screen and the data code block must also select the correct
work area for the field variable.

14.3.6. Program control in dialog windows

The previous discussions of GUI application concepts have focused on the basic organization
of a GUI program. The key issues discussed were the program start, program execution, and
program end. These correspond to AppSys() with a menu system, the Main procedure with
the event loop and AppQuit(), respectively. The DataDialog class was discussed as a
mechanism for linking dialog windows with DatabaseEngines. This class offers solutions to
problems that can occur during simultaneous access on a network or when a database is
opened multiple times in a single application. In the previous section, incorporating Xbase
Parts into a dialog window was illustrated. The final remaining question for programming
GUI applications is: How is the program controlled within an individual dialog window?

A distinction must be made between controlling a window and controlling an application.
The overall running of the application is controlled by the application menu installed in the
application window. In an SDI application, control of the application is basically the same as
control of the dialog window, since the application consists of only a single dialog window.
In the SDIDEMO example application, control of the application through the menu system
includes selecting the data entry screens for customer data or for parts data. Control within
windows occurs using pushbuttons that allow record pointer movement within the customer
file or parts file, cause the current data to be saved or terminate the data input.

In the example application MDIDEMO, the application control is limited to opening the
customer or parts data entry screen. A child window presents data for a customer or a part.
As soon as a child window is opened, the application and the application menu no longer
have control over the newly opened window. Program control within a child window is
performed in an MDI application by a context menu that is an essential control element for
program control. A context menu is ggnerally activated by clicking the right mouse button. It
is displayed on the screen as a Popup menu. Its menu items provide a selection of actions that

220

Alaska Xbase* * Basic Users Guide

Program control in dialog windows

are appropriate to execute within the window or in relation to the dialog element where the
right mouse click occurred.

The context menu in the MDIDEMO example application includes program control of
database navigation (DbSkip(), DbGoBottom(), DbGoTop()) and clementary database
operations such as "Search", "Delete" and "New record". Programming a context menu
requires the definition of an XbpMenu object and is otherwise similar to programming
application menu objects. As an example, the program code to create the context menu for
the customer database used in MDIDEMO is shown below:

KA KK AR KA A AR ARk AR A AR AR A AR R KRR R A AR AR Ak ARk Ak ko kkk kA kkk kA Ak hkkkhh Ak kkhkkhkkkkk

* Create context menu for customer dialog
KhkkhkhkhkAkhkhkhkkhhkhkhkhkhkhkhk kA bk Ak khk kA hhkhkhk bk ok kb hkhkkhkh Ak kA bk khkkhkhkk Ak kA XAk k kK
STATIC FUNCTION ContextMenu ()

STATIC soMenu

IF soMenu
soMenu

soMenu:
soMenu:

soMenu:

soMenu:

soMenu:

soMenu:

soMenu:

soMenu:

soMenu:

== NIL

title :=
create()

addItem(

addItem(

addItem(

addItem(

addItem(

addItem(

addItem(

DataDialogMenu () :new()
"Customer context menu"

{ "New", ;
{Impl,mp2,obj| DbGoTo(LastRec()+1) } ;

{ " _Seek™" , :
{|mpl,mp2,o0bj| SeekCustomer(obj:cargo) } ;

{ "~Delete" , ;
{Impl,mp2,obj| DeleteCustomer(obj:cargo) } ;

{ "S~ave" , ;

{Impl,mp2,o0bj| obj:cargo:writeData() } ;
MENUITEM_SEPARATOR)
{ "~First" , ;

{Impl,mp2,obj| DbGoTop() } ;

{ ""‘Last" , ;
{Impl,mp2,obj| DbGoBottom() } ;

Alaska Xbase* * Basic Users Guide

221

Program control in dialog windows

soMenu:addItem(MENUITEM_SEPARATOR)

soMenu:addItem({ "~Previous" , ;
{Impl,mp2,0bj| DbSkip(-1) } ;
P

soMenu:addItem({ "~Next" , ;
{Impl,mp2,obj| DbSkip(1l) } ;
})

// menu items are disabled after Bof() or GoTop()
soMenu:disableTop := {6, 9}

// menu items are disabled after GoBottom()
soMenu:disableBottom := { 7, 10 }

// menu items are disabled at Eof()
soMenu:disableEof = {1, 2, 3}

ENDIF

RETURN soMenu

A code block is defined for each menu item in the context menu. This code block is executed
when the user selects the menu item. Many of the code blocks control database navigation
using functions such as DbSkip(), DbGoTop(), and DbGoBottom(). The DataDialog object is
automatically notified of these operations (its :notify() method is called) since it is registered
in the work area. The context menu itself can only be activated on the DataDialog object
(child window) which currently has focus. The menu is activated with a right mouse click that
must occur within the DataDialog window. The DataDialog window activates its context
menu through the following callback code block (see MDICUST.PRG file, function
Customer()):

drawingArea:RbDown := {|mpl,mp2,0bjl ;
ContextMenu () :cargo := obj:setParent(), ;
ContextMenu () :popup(obj, mpl) }

The :drawingArea is the drawing area of the DataDialog window. The ContextMenu()
function is shown above. This function returns the contents of the STATIC variable soMenu,
which is the context menu. The code block parameter obj contains a reference to the Xbase
Part that is processing the event xbeM_RbDown (right mouse button is pressed). In this case,
this is the drawing area of the DataDialog (:drawingArea) and the expression obj:setParent()
returns the DataDialog object that is assigned to the :cargo instance variable of the context
menu. This all occurs before the context menu is displayed using the method :popUp(). The
current mouse coordinates (relative to obj) are contained in mpI. This allows the return value
of ContextMenu() (the context menu) to be displayed at the position of the mouse pointer.

222

Alaska Xbase* * Basic Users Guide

Program control in dialog windows

When a menu item is selected in the context menu, the DataDialog object where the context
menu is activated is always contained in the :cargo instance variable. This DataDialog object
has the focus (otherwise it would not react to a right mouse button click). The DataDialog
object with the focus was previously selected via the callback code block :setDisplayFocus
which sets the appropriate work area as the current work area. Database navigation can occur
in the context menu by simply calling DbSkip() or DbGobottom() without the work area
where the movement is to occur being specified. The work area is selected by the DataDialog
object when it receives the focus. The context menu can only be activated on a DataDialog
object that has the focus because only the DataDialog object with focus reacts to the event
xbeM_RbDown and the context menu is only activated in the callback code block :RbDown.

This discussion outlines program control via a context menu as it is used in the example
application MDIDEMO (it may be easier to follow by stepping through the code in the
debugger). In conclusion, a context menu can be an important control element in a

GUI application. Generally a context menu is not specific to a work area but calls
functionality that must operate regardless of the work area. In short: a context menu
controls an Xbase Part.

Alaska Xbase* * Basic Users Guide 223

The Xbase** Graphics Engine (GRA)

15. The Xbase*+* Graphics Engine

(GRA)

This chapter describes the Xbase** GraphicsEngine (GRA engine) which provides the
programmer a convenient environment for graphic output. The GRA engine provides
functional access to the graphic output system. It includes a total of 32 functions which can
be used to easily create simple, up-to-date business graphics such as bar charts and pie
diagrams. The GRA engine can also display bitmaps and metafiles and modify the
appearance of dialog elements (Xbase-Parts).

15.1. Basics for graphic output

Using the GRA engine requires that an Xbase** program be linked in for the GUI mode.
Graphic output can not be done in VIO mode (see the chapter "Compiling and linking"). All
graphic functions begin with the prefix "Gra". They often require graphic coordinates which
are generally specified in "pixel units". A pixel is a dot on the screen. The default size of a
window in which an Xbase** application is run is 640x350 pixels. The origin of the graphic
coordinate system (the point 0,0) is at the bottom left corner of a window.

In text mode (VIO mode), the coordinates of the screen cursor are determined using the
functions Row() and Col(). The origin of the coordinate system in text mode is the upper left
corner of the window and the default size of a window is 25 rows and 80 columns. When
programming using graphic functions, a different graphic coordinate system must be used. It
has a different origin than the text mode coordinate system, and row and column coordinates
are not used. Graphic X and Y coordinates are used instead. The XY coordinates are in
relation to the geometric X axis (horizontal) and Y axis (vertical).

Graphic output does not involve a screen cursor such as the one used in text mode to identify
the current position on the screen. Instead, graphics mode incorporates a "pen". The pen
position in graphics mode is similar to the cursor position in text mode. The pen position is
defined as a point in the coordinate system and the cursor position is defined in terms of its
row and column position. In graphics programming, a point is always represented by an array
containing two elements which represent the X and Y coordinates for a point. The following
code shows a comparison of cursor and pen position:

SetPos(10, 20) // position cursor in text mode
? Row () // result: 10

? Col() // result: 20

GraPos(, {20,10}) // position pen in graphics mode
? GraPos() // result: { 20, 10}

224

Alaska Xbase " * Basic Users Guide

Basics for graphic output

Note: The origin of the coordinate system for graphic output is lower left while in text mode
it is upper left. The unit for the coordinate system is "pixel”. One pixel (or point) is specified
using a two-element array.

Graphic output generally occurs in the current window. When the output is not in a window
(for example, it may be sent to a printer), the output mechanism for graphics must be taken
into account. Graphic output occurs only in what is called a "presentation space” (Note: in
Xbase, presentation spaces are provided by the XbpPresSpace() class). A presentation
space contains the part of the definition for graphic output that is independent of the output
device. A graphic can look different depending on the output device used for the display.
Example: he display of a graphic on the screen occurs in a window. The unit for the
coordinate system is the "pixel". When the graphic is output to a printer, the unit "0.1 cm"
could be selected instead of pixel. The output of the graphic on the printer would then differ
considerably from the output in the window.

In the discussion of graphic output, the device independent output must be distinguished from
device dependent output. A presentation space defines everything required for device
independent display of graphics. This includes, for example:

- Origin and unit of the coordinate system
- Colors for the display

- Type of line for lines

- Fill pattern for areas

- Font type and size for characters

- Size of the display area

The presentation space can be thought of as an abstract drawing area for graphic output (a
presentation space can also be thought of as similar to an empty piece of paper that can be
drawn on). It defines all attributes for graphic output that are independent of the output
device. An output device is, for example, a window (the screen) or a printer. A physical
output device is called a "device context". A device context contains all device dependent
attributes. To display graphic output, a presentation space (device independent) must be
combined with a device context (device dependent). Nothing drawn in the presentation space
is visible. Only by linking the presentation space with a device context can graphic output in
the presentation space be made visible on the physical output device.

As long as graphic output occurs only in an XbpCrt window, the presentation space does not
need to be dealt with because that window has a presentation space associated with it and
makes the device context available. In the description of the GRA engine and its functions
other windows or output devices are not considered. They are described in later chapters
about presentation spaces and graphic output devices. In all graphic functions the first
parameter specifies the presentation space for drawing. The current XbpCrt window is the
default presentation space so that neither a device context nor a presentation space need to be

Alaska Xbase* * Basic Users Guide 225

Graphic primitives

specified when drawing in the current window. If a window is created in the default size, a
drawing area of 640x400 pixels is available. The pen position is at the point {0,0} after the
window is created. Drawing output always begins at the current pen position. Because it sets
the pen position, the function GraPos() is an important, fundamental function of the GRA
engine. Another basic function is GraError() which determines whether graphic output was
successful or an error occurred.

Basic functions for the GRA engine

Function Description
GraPos() Return or set pen position
GraError() Return numeric error code for last graphic output

The GRA engine is dependent on the hardware and on installed device drivers in the same
way as the operating system does. If graphic output does not occur as expected, GraError()
tests whether the graphic operation is unsupported by the hardware or device driver.

15.2. Graphic primitives

"Graphic primitives" are required to produce graphics. They are functions that draw
elementary graphic figures, like lines, circles and rectangles. They always draw in a
presentation space which displays itself in a device context that makes the result of graphic
primitives visible on a physical output device.

Graphic primitives are the basic building blocks for graphic output. The GRA engine makes
use of the six graphic primitives listed in the following table:

Graphic primitives

Function Description

GraMarker() Draws marker

GraLine() Draws line

GraBox() Draws box or rectangle

GraStringAt() Draws character string

GraSpline() Draws curve (Splines)

GraArc() Draws circle, arc or ellipse
GraQueryTextBox() Returns the coordinates of a character string

The functions in this table draw six elementary graphic figures: markers, lines, rectangles,
circles, splines and character strings. The function GraQueryTextBox() is not a graphic
primitive and does not display anything. This function determines the coordinates of the area

226 Alaska Xbase * * Basic Users Guide

Attributes for graphic primitives

occupied by a character string when it is output. This is significant for correct positioning of
character strings on the display, especially with proportional fonts. The following illustration
shows the result of various graphic primitives.

Output of graphic primitives

This illustration shows a few of the possibilities provided by the GRA engine through its
graphic primitives. The illustration is created using Xbase* and contains four examples. In
the upper left quadrant lines, splines and markers are shown (the GraMarker(), GraLine() and
GraSpline() functions). The upper right quadrant is drawn using GraStringAt(),
GraQueryTextBox() and GraBox(). In the bottom half of the illustration two business graphs
are shown. The bar graph is drawn mainly using GraBox() and GraLine() and the pie chart
uses the function GraArc().

15.3. Attributes for graphic primitives

Attributes are set before drawing in order to modify the output of graphic primitives. These
settings are valid until they are reset. For example, colors, line types and fill patterns for areas
can be defined. The number of attributes differs for different graphic primitives. Attributes
are defined in the form of an attribute array whose size and elements are determined using
constants defined in the GRA.CH file. Also, the values that are entered in the elements of the
attribute array are represented using #define constants.

Alaska Xbase* * Basic Users Guide 227

Attributes for graphic primitives

The basic procedure for changing attributes of graphic primitives is shown in the following
code:

aAttribute := Array(GRA_AL_COUNT) // create empty attribute
// array for lines

aAttribute[GRA_AL_TYPE] GRA_LINETYPE_SHORTDASH
aAttribute[GRA_AL_COLOR] := GRA_CLR_RED // select line type "short
// dash" and the color red

GraSetAttrLine(, aAttribute) // set line attributes

This code illustrates the naming convention used by the GRA engine for the #define
constants. All the constants begin with the prefix GRA_. Generally another prefix is also
included to identify the group of GRA _ constants and a suffix is included at the end which
uniquely defines the constant. Attributes can be set for markers, lines, areas and character
strings. Thus, there are four possible attribute arrays that are created using the four constants:

aAttrMarker := Array(GRA_AM_COUNT) // attribute array for markers
aAttrLine := Array(GRA_AL_COUNT) // attribute array for lines
aAttrArea := Array(GRA_AA_COUNT) // attribute array for areas
aAttrString := Array(GRA_AS_COUNT) // attribute array for string

The letters AM, AL, AA and AS are abbreviations for "attribute marker", "attribute line",
"attribute area" and "attribute string". Each element of an attribute array defines a specific
attribute. An element is identified by a #define constant which is prefixed by the attribute
array prefix such as GRA_AM_, GRA_AL_, GRA_AA_ or GRA_AS_. An attribute is set by
assigning a value to the appropriate element in the attribute array. For each attribute there is
only a limited number of valid values which are again used in the form of #define constants.

aAttribute GRA_AL_TYPE] := GRA_LINETYPE_SHORTDASH

In this line of code, the attribute "line type" receives the value for a short dashed line. Valid
values for line types (more precisely, for the attribute GRA_AL_TYPE) are constants that are
prefixed with GRA_LINETYPE _. For each attribute there is a group of #define constants
like this that can be assigned as the value for the attribute.

Attributes are defined for a presentation space and therefore the attribute array must be
passed to the presentation space after the attribute is inserted into the array. Only then are the
attributes actually set and used for the graphic primitives during drawing. The functions used
to assign the attribute arrays to the presentation space are listed in the following table.

228 Alaska Xbase* * Basic Users Guide

Attributes for graphic primitives

Functions for attributes of graphic primitives

Function Description

GraSetAttrMarker() Sets attributes for markers
GraSetAttrLine() Sets attributes for lines
GraSetAttrArea() Sets attributes for areas
GraSetAttrString() Sets attributes for character strings
GraSetColor() Sets colors for all graphic primitives
GraSetFont() Sets font for graphic output of characters

The GraSetAttr..() functions pass an attribute array to a presentation space (Note: these
functions are coded in the GRASYS.PRG file. They call corresponding methods of an
XbpPresSpace object). The attributes set for markers are used by the graphic primitive
GraMarker(). The attributes for lines are used by GraLine() and GraSpline(). They are also
used by GraArc() and GraBox() when a circle or a rectangle is drawn with a border (the
border is a line). If a circle or a rectangle is to be filled with a pattern, the attributes for areas
are used. These are defined by GraSetAttrArea(). The graphic primitives GraArc() and
GraBox() use line attributes as well as area attributes. Attributes for character strings are used
exclusively by GraStringAt(). The following tables give an overview of the attributes that can
be set for markers, lines, areas and character strings.

#define constants for the attribute array for markers -

GraSetAttrMarker()

Array element f#tdefine | value Description

GRA_AM_COLOR GRA_CLR_* Foreground color
GRA_AM_BACKCOLOR GRA_CLR_* Background color
GRA_AM_MIXMODE GRA_FGMIX_* Mix attribute for foreground color
GRA_AM_BGMIXMODE GRA_BGMIX_* Mix attribute for background color
GRA_AM_SYMBOL GRA_MARKSYM_* Marker symbol

GRA_AM_BOX {nXsize, nYsize} Size of the marker symbol

#define constants for the attribute array for lines - GraSetAttrLine()

Array element #tdefine group Description

GRA_AL_COLOR GRA_CLR_* Foreground color
GRA_AL_MIXMODE GRA_FGMIX_* Mix attribute for foreground color
GRA_AL_WIDTH GRA_LINEWIDTH_* Line width

GRA_AL_TYPE GRA_LINETYPE_* Line type

Alaska Xbase* * Basic Users Guide 229

Attributes for graphic primitives

#define constants for the attribute array for areas - GraSetAttrArea()

Array element #define | value Description

GRA_AA_COLOR GRA_CLR_* Foreground color
GRA_AA_BACKCOLOR GRA_CLR_* Background color
GRA_AA_MIXMODE GRA_FGMIX_* Mix attribute for foreground color
GRA_AA_BGMIXMODE GRA_BGMIX_* Mix attribute for background color
GRA_AA_SYMBOL GRA_SYM_* Fill pattern for areas

#define constants for the attribute arrays for character strings

Array element #define | value Description

GRA_AS_COLOR GRA_CLR_* Foreground color
GRA_AS_BACKCOLOR GRA_CLR_* Background color
GRA_AS_MIXMODE GRA_FGMIX_* Mix attribute for foreground color
GRA_AS_BGMIXMODE GRA_BGMIX_* Mix attribute for background color
GRA_AS_BOX {nXsize,nYsize} Size of each character
GRA_AS_ANGLE {nX,nY} Output angle of character strings
GRA_AS_SHEAR {nX,nY} Shear of characters (italics)

GRA_AS_DIRECTION GRA_CHDIRN_* Write direction
GRA_AS_HORIZALIGN GRA_HALIGN_* Horizontal alignment
GRA_AS_VERTALIGN GRA_VALIGN_* Vertical alignment

GRA_AS_EXTRA nExtra Distance between characters in
character strings
GRA_AS_BREAK_EXTRA nBreakExtra Distance between words

Colors for graphic primitives

The function GraSetColor() defines the foreground and background color for the graphic
primitives of the GRA engine. Colors defined using the function SetColor() are valid only for
display in text mode and in hybrid mode. The GraSetAttr..() functions can individually set
colors for markers, lines, areas and character strings that are then used instead of the globally
defined colors. With the exception of lines, graphic primitives have a foreground and a
background color. Lines have only a foreground color. The background color is not generally
visible. It is used when displaying characters, which are always surrounded by a rectangle.
The rectangle surrounding each character is drawn in the background color and the character
itself (the letter) is displayed in the foreground color. The mix attribute for the background
color must be defined in order to make the background color visible. Color mix attributes can
be defined for the foreground color as well as for the background color. They determine how
the colors of graphic primitives are mixed with each other when the output of a graphic
primitive covers an already existing drawing.

230

Alaska Xbase* * Basic Users Guide

Attributes for graphic primitives

Mix of foreground and background colors

In this illustration, the circles are drawn first. The mix attribute for the foreground color is
changed from GRA_FGMIX_OVERPAINT (the default value, that causes the new primitive
to cover the old) to GRA_FGMIX_OR prior to display of the lower square. When this mix
attribute is set, the foreground color of the square is mixed with the foreground color of the
existing drawing. When GRA_FGMIX_OR is set, the mix occurs using a bitwise OR
between the color values of the existing colors and the colors of the new graphic being
drawn. The area where the circle and square are combined is visible in the mix color and this
section appears somewhat lighter than the rest of the circle. The color of the rest of the square
in the illustration is the result of the color mix between dark gray (square) and pale gray
(window color).

In the right part of the illustration, character strings are drawn over a circle. Within the circle,
the background color for characters is visible. It causes the fill pattern of the circle to appear
lighter. In this case, the mix color is a result of the value GRA_BGMIX_OR for the mix
attribute of the background color of GraStringAt(). By default the mix attributes are set so
that the foreground color paints over everything already displayed
(GRA_FGMIX_OVERPAINT) and the background color remains unaffected
(GRA_BGMIX_LEAVEALONE). The mix attribute for the foreground color is always
significant when graphic primitives overlap each other and the shared section is to remain
visible. When character strings are displayed, the mix attribute for the background color
should also be considered, since both the foreground color (letter) and the background color
(the rectangle which surrounds a letter) are shown.

A special value for the color mix attribute for foreground colors is GRA_FGMIX_XOR. The
result of displaying graphic primitives when this value is set is that the graphic primitives are
deleted from the screen if they are drawn at the same location a second time. Also, the
resulting mix color of a graphic primitive which paints over an existing drawing depends on
the color of the existing drawing and the color of the graphic primitive. The following two
tables list the constants that can be used for the mix attribute of the foreground color and the
background color:

Alaska Xbase* * Basic Users Guide 231

Attributes for graphic primitives

Mix attributes for foreground colors

Constant

Description

GRA_FGMIX_OVERPAINT
GRA_FGMIX_LEAVEALONE
GRA_FGMIX_OR
GRA_FGMIX_XOR
GRA_FGMIX_AND
GRA_FGMIX_NOTMERGESRC
GRA_FGMIX_NOTMASKSRC
GRA_FGMIX_NOTXORSRC
GRA_FGMIX_INVERT
GRA_FGMIX_NOTCOPYSRC
GRA_FGMIX_SUBTRACT
GRA_FGMIX_MERGENOTSRC
GRA_FGMIX_MASKSRCNOT
GRA_FGMIX_MERGESRCNOT
GRA_FGMIX_ZERO

GRA_FGMIX_ONE

Paints over existing colors

Uses existing colors

Mixes new and existing colors using bitwise
OR of the color bits

Mixes new and existing colors using bitwise
XOR of the color bits

Mixes new and existing colors using bitwise
AND of the color bits

Inverts mix color of GRA_FGMIX_OR
Inverts mix color of GRA_FGMIX_AND
Inverts mix color of GRA_FGMIX_XOR
Inverts existing color

Inverts new color

Inverts new color and mixes it with existing
color using bitwise AND of the color bits
Inverts new color and mixes it with existing
color using bitwise OR of the color bits
Inverts existing color and mixes it with new
color using bitwise AND of the color bits
Inverts existing color and mixes it with new
color using bitwise OR of the color bits
Resulting color is black (all color bits are
set to 0)

Resulting color is white (all color bits are
setto 1)

Mix attributes for background colors

Constant

Description

GRA_BGMIX_OVERPAINT
GRA_BGMIX_LEAVEALONE
GRA_BGMIX_OR

GRA_BGMIX_XOR

Paints over existing colors

Uses existing colors

Mixes new and existing color using bitwise
OR of the color bits

Mixes new and existing color using bitwise
XOR of the color bits

Alaska Xbase - * Basic Users Guide

Graphic segments

Set font for characters

The function GraSetFont(), along with GraSetAttrString(), affects the display of characters
and character strings. GraSetFont() passes to a presentation space an XbpFont object defining
the font for graphic display of characters. By default, the font "System VIO" is used. To
change the font, an XbpFont object must be created and passed to the presentation space.
The size can be defined when an XbpFont object is created (the size is in points). When an
XbpFont object is created using XbpFont():new(), a font is not yet available, but is only
loaded into memory by the method :create() (refer to the section "Basics for Xbase Parts"
and the discussion of their life cycle). Also, an XbpFont object can only load fonts that are
available as system fonts. A distinction must be made between fonts that are device
dependent (for example, fonts only available for a printer) and those that are device
independent.

It is recommended that fonts be loaded using XbpFont():new() and then modifid using
GraSetAttrString(). The attributes for character strings allow the creation of diverse font
displays. This begins with the size of individual characters and includes the angle in which a
character is displayed relative to the horizontal axis.

Because of internal differences between XbpFont()and GraSetAttrString(), XbpFont() should
be used only to load a font and GraSetAttrString() should be used to define the attributes for
displaying characters. It should be noted that many attributes are valid only for vector fonts.
A vector font is drawn as the outline of the letters using graphic primitives and then the
outline is filled. A letter in a bitmap font consists of a raster image. Because of this, the
characters of a bitmap font can not be automatically converted to italics. In order to display
the characters of a bitmap font in italics, a separate italic bitmap font is required.

15.4. Graphic segments

A graphic segment contains one or more graphic primitives and allows the result of several
graphic primitives to be redrawn without having to call the graphic primitives again. Graphic
segments can also have a numeric ID and can be found based on a specified point in the
coordinate system. For example, this can allow an application to determine which graphic
segment a mouse click occurred in. The definition of a graphic segment is initiated using the
function GraSegOpen() which returns the numeric ID for the new segment. All subsequent
calls to graphic primitives are recorded in the segment until the definition of the graphic
segment is completed using GraSegClose().

After the graphic segment is defined, all graphic primitives contained in the segment are
redrawn when the function GraSegDraw() is called. The functions used to program graphic
segments are listed in the following table:

Alaska Xbase* * Basic Users Guide 233

Graphic segments

Functions for graphic segments

Function Description

GraSegOpen() Initiates definition of graphic segment
GraSegClose() Terminates definition of graphic segment
GraSegPriority() Sets drawing order of graphic segment
GraSegDestroy() Releases graphic segment

GraSegDraw() Draws graphic segment

GraSegDrawMode() Specifies drawing mode for graphic segments
GraSegFind() Locates graphic segment based on position
GraSegPickResolution() Sets resolution used in searching for segments

A graphic segment can be viewed as a complex primitive consisting of many graphic
primitives that are executed between GraSegOpen() and GraSegClose(). Drawing, or making
a graphic segment visible, depends on the drawing mode defined in the presentation space
when the segment is opened with GraSegOpen(). There are three different modes that are set
using the function GraSegDrawMode():

Drawing modes for graphic segments

Constant Description

GRA_DM_DRAW Primitives between GraSegOpen() and
GraSegClose() are drawn but not stored

GRA_DM_RETAIN Primitives between GraSegOpen() and

GraSegClose() are stored but not drawn
GRA_DM_DRAWANDRETAIN Primitives between GraSegOpen() and
GraSegClose() are drawn and stored

The GRA_DM_DRAW mode draws but does not store the primitives defined in the segment.
The segment can not be redrawn using GraSegDraw(). This mode is only useful when a
drawing is to be stored in a metafile (see the sub-section "The metafile - XbpMetaFile()" in
the section "Graphic output devices").

The GRA_DM_RETAIN drawing mode stores all graphic primitives in a segment, but does
not display them. This allows complex drawings to be defined invisibly to the user step by
step, and then made visible all at once using GraSegDraw(). In the third drawing mode,
output occurs while the segment is being defined and all graphic primitives are already
visible when the segment is closed using GraSegClose(). In this mode, the function
GraSegDraw() only has to be called if the segment needs to be redrawn.

If graphic segments are defined for a window, only graphic primitives can be stored in the
segment and not the attributes for the graphic primitives. When a segment is drawn, the
attributes for points, lines, areas and characters that are set when GraSegDraw() is called are

234

Alaska Xbase* * Basic Users Guide

Graphic paths

used for the display (Note: when graphic segments are stored in a metafile, the attributes are
also stored).

The defined graphic segments are arranged in priority which increases in the order the
segments were defined. The first segment defined has the lowest priority and the last segment
defined has the highest priority. The priority determines the order in which graphic segments
are drawn. If the function GraSegDraw() is called without parameters, all graphic segments
are redrawn. The segment with the lowest priority is drawn first and the segment with the
highest priority is drawn last. This is significant when graphic segments overlap each other
during drawing. The segments with higher priority paint over segments with lower priority.
The result is that segments with high priority appear "in front" and segments with low priority
appear "behind" the segments with high priority. The priority can be thought of as the z axis
in a three dimensional coordinate system. The higher the priority, the more toward the front
the graphic segments appear if they overlap other segments. The function GraSegPriority()
raises or lowers the priority of an individual segment in relation to a second segment.

A unique characteristic of graphic segments is the fact that they can be "found" based on their
position. This is done using the function GraSegFind() which is passed the coordinates for a
point as a parameter and returns an array containing the numeric IDs of all the graphic
segments which encompass this point. The graphic segments can then be used for user
interaction. After a mouse click, for example, the coordinates of the mouse pointer can be
passed to the function GraSegFind() in order to identify all graphic segments that include the
point where the mouse was clicked. The function GraSegFind() does not consider the exact
coordinates of the mouse pointer (the point at the tip of the mouse pointer), but works with a
virtual rectangle which is moved along with the mouse pointer. It is possible to find a graphic
segment where the mouse pointer is near the segment but remains just outside. In this case the
virtual rectangle around the mouse pointer overlaps the edge of the segment. The size of the
virtual rectangle can be set using the function GraSegPickResolution() and determines the
preciseness or resolution used by the function GraSegFind() in searching for graphic
segments.

15.5. Graphic paths

A graphic path is very similar to a graphic segment. It is initiated using the function
GraPathBegin() and terminated using GraPathEnd(). Graphic primitives which are called
between these two functions describe the graphic path. The graphic path is defined in a
manner similar to the definition of a graphic segment but it has an entirely different purpose:
it defines the borders of an area.

After a graphic path is defined, the area described by it can be made visible by any one of
three path operations. An overview of path operations is presented in the next table:

Alaska Xbase* * Basic Users Guide 235

Graphic paths

Functions for graphic paths

Function Description

GraPathBegin() Initiates definition of graphic path
GraPathEnd() Terminates definition of graphic path
GraPathFill() Fills graphic path

GraPathOutline() Outlines graphic path

GraPathClip() Specifies graphic path as a clipping path

Graphic primitives that are called between GraPathBegin() and GraPathEnd() define the
outline of an area that forms the graphic path. The primitives are not drawn and remain
hidden. The defined area can then be filled with a color and/or pattern using GraPathFill().
The attributes for areas set with GraSetAttrArea() are used. The border of the defined area
can be drawn using GraPathOutline() which makes the primitives visible. In this case, the line
attributes set with GraSetAttrLine() are used.

After one of the two path operations (GraPathFill() or GraPathOutline()) are executed, the
graphic path is discarded and is no longer available. When an area is to be outlined as well as
filled, a graphic path can be defined within a graphic segment. The path can then be redefined
using GraSegDraw(). Example:

nSegmentID := GraSegOpen () // open segment

GraPathBegin () // initiate path

/* execute graphic primitives */

GraPathEnd () // end path
GraSegClose() // close segment
GraPathFill () // £ill area
GraSegDraw(, nSegmentID) // redefine path
GraPathOutline() // outline path

Unlike GraPathOutline(), the path operation GraPathFill() requires that the area described by
the path be closed. If this is not the case, the entire window is filled by GraPathFill().

A special path operation is performed using GraPathClip(). Anything drawn in the window is
limited to the area defined by the graphic path. Output outside this area is not possible while
the clipping path is set. This includes all graphic functions as well as the functions available
in hybrid mode, like QOut() and Alert(). The clipping path is activated using GraPathClip(,
.T.) and must be deactivated using GraPathClip(, .F.).

236

Alaska Xbase ' * Basic Users Guide

Graphic transformations and raster operations

Graphic paths

This illustration shows some of the ways in which graphic paths can be used. On the left a
clip path is defined by two concentric circles (using the function GraArc()). Within the clip
path, a character string is drawn several times using GraStringAt(). The "paper airplane”
consists of only seven points. The points are connected to each other using GraLine() and the
graphic paths are defined and then outlined and filled with various patterns. Three fill
patterns are used to illustrate the separate graphic paths, (the two "wings" are one graphic
path). The text "Alaska" is drawn between GraPathBegin() and GraPathEnd() and then filled
with a pattern using GraPathFill(). This shows that a graphic path itself can consist of several
individually enclosed areas. Each letter forms a separate closed area.

15.6. Graphic transformations and
raster operations

The GRA engine allows drawings created with graphic primitives to be transformed.
"Transformed" means that a drawing can be turned, inverted, enlarged or reduced in size.
There is an important distinction here between vector and raster images. A vector image is a
drawing defined only by points in the coordinate system and how these points are connected
with each other by lines. The lines can define the border for an area and the area can be filled
with a color or a pattern. A raster image, however, is just an area filled with dots of color.
The area is divided up by a raster and each dot in the raster has its own color. A raster image
is generally called a "bitmap". A dot in a bitmap is called a "pixel".

There are three functions in the GRA engine for transforming vector images and a single
function for performing raster operations.

Alaska Xbase* * Basic Users Guide 237

Graphic transformations and raster operations

These four functions are listed in the following table:

Functions for transformations and raster operations

Function Description

GraRotate() Calculates rotation transformation matrix
GraScale() Calculates scaling transformation matrix
GraTranslate() Calculates translation transformation matrix
GraBitBIt() Performs operations with raster images (bitmaps)

Transformation from vector images

The six graphic primitives of the GRA engine are used to create vector images (except that
when a bitmap font is set, character strings are drawn as raster images). A vector image can
be transformed in any manner. There is the practical limitation that transformation of graphic
primitives is not possible, but only the transformation of graphic segments (these contain
graphic primitives). Thus, when drawings are to be transformed they must be defined within
graphic segments.

The three possible graphical transformations of a vector image involve the operations of
"rotating" (turn an image), "scaling" (enlarge or reduce an image) and "translating" (move,
copy or invert an image). Each of these operations requires that a transformation matrix be
calculated. The calculations for the three possible transformations are done using the
functions GraRotate(), GraScale() and GraTranslate(). The three functions only calculate a
transformation matrix for one of these three possible graphical transformations, they do not
display anything. The transformation matrix itself is a two dimensional array with three rows
and three columns. The array must be created before the transformation using
GralnitMatrix(). GralnitMatrix() is a pseudo function defined in GRA.CH. It is translated
into a two dimensional array which must be used for calculating a transformation matrix.

To make the transformation visible, the graphic segment must be redrawn. This occurs using
the function GraSegDraw() and passing the transformation matrix containing the result of the
calculations for the desired transformation to this function. Here is an example:

#include "Gra.ch"

PROCEDURE Main
LOCAL nSegment, i, aMatrix := GraInitMatrix()

SetColor ("N/W") // £ill window with pale gray
CLS
nSegment := GraSegOpen () // define segment

GraBox(NIL, {200,150}, {300,230}, GRA_OUTLINE)
GraSegClose() // create a box in a segment

Alaska Xbase * Basic Users Guide

Graphic transformations and raster operations

GraSegDraw(NIL, nSegment) // display box

FOR i:=1 TO 12 // draw box 12 times rotating
// each one 30 degrees left
GraRotate (NIL, aMatrix, -30, {200,150}, GRA_TRANSFORM_ADD)
GraSegDraw(NIL, nSegment, aMatrix)
NEXT
RETURN

In this example, a graphic segment is created that contains only one graphic primitive
(GraBox()). Within the FOR..NEXT loop, the segment is drawn 12 times and each time a
rotation of -30 degrees is calculated based on a turning point at the lower left corner of the
box (the point {200,150}). The negative angle -30 degrees causes a rotation to the left (a
positive angle would cause a rotation to the right). The example shows that it is essential to
first calculate the transformation matrix. To calculate the transformation matrix, a matrix
created by GralnitMatrix() is needed. The result of the calculation of GraRotate() is visible
only after GraSegDraw() is called. The transformation matrix must be passed to the function
GraSegDraw().

A graphic transformation requires a total of four steps. First, the transformation matrix must
be created using GralnitMatrix(). The second step is defining the graphic segment containing
the drawing to be transformed. Third, the transformation is calculated using GraRotate(),
GraScale() or GraTranslate() to create the transformation matrix. Finally, the graphic
transformation is displayed using GraSegDraw(). The transformation matrix previously
calculated using GraRotate(), GraScale() or GraTranslate() must be passed to the function
GraSegDraw().

Note: The two #define constants GRA_TRANSFORM_ADD and
GRA_TRANSFORM_REPLACE affect the calculation of repeated transformations. If
GRA_TRANSFORM_ADD is specified the transformation matrix is left unchanged after it is
used to display the segment. GRA_TRANSFORM_REPLACE (default) causes the
transformation matrix to be reset to the initial value of GralnitMatrix() when the display
using the matrix calculation is complete. Using GRA_TRANSFORM_ADD, several
transformations can effectively be added together. GRA_TRANSFORM_REPLACE begins
each graphic transformation with the initial matrix predetermined by GralnitMatrix().

Important: These transformations are valid only for vector images. They can not be applied
to raster images (bitmaps).

Transformation of bitmaps - Raster operations

Raster images (bitmaps) can be transformed in a manner similar to vector images, with the
limitation that images in the form of a bitmap can not be turned (rotation is not possible with
bitmaps). Bitmaps can be copied, enlarged or reduced in their entirety or in sections. The
function GraBitBlt() handles these tasks. No transformation matrix needs to be calculated for
transformations of raster images. The source and the target coordinates are passed to the

Alaska Xbase* * Basic Users Guide 239

Graphic transformations and raster operations

function GraBitBIt() in the form of an array. GraBitBlt() processes the coordinates for the
area of the bitmap which is to be copied and the coordinates for the area into which it is to be
copied. The source coordinates correspond to the presentation space in which the raster
image is already displayed and the target coordinates correspond to the presentation space
into which it is copied. Both presentation spaces can be associated with the same device
context. In this case, a raster image from the area of the source coordinates is copied to the
area of the target coordinates. When the source and target coordinates describe areas of
different sizes, automatic scaling of the raster image occurs. The following illustration shows
the result of various raster operations using GraBitBIt(). The initial image is displayed upper
left:

Raster operations with GraBitBIt()

To create this illustration, a bitmap is initially displayed in the upper left of the image and
then the function GraBitBIt() is called four times using different source and target
coordinates. The raster image is copied, enlarged, and reduced as a whole and in sections.

A special characteristic of the function GraBitBIt() is that the source and target areas of the
raster operation can occur in two different presentation spaces. The output of the raster image
depends on the device context linked to the presentation space when the display occurs. For
example, it is possible to copy a raster image from a presentation space associated with a
window to a presentation space associated with a printer device context. In this way raster
images visible in a window can be output to a printer.

240

Alaska Xbase '+ Basic Users Guide

Presentation Spaces for Graphic Output

16. Presentation Spaces for
Graphic Output

A presentation space is the central element for graphic output. Xbase** uses the class
XbpPresSpace() to provide a simple mechanism to access presentation spaces on the Xbase**
language level. The essential elements of a presentation space have already been described in
the section "Basics for graphic output”. As discussed, a presentation space makes an abstract
drawing area available that contains all the device-independent information about a drawing.
The output of a drawing on the physical output device depends on the device context
associated with the presentation space. A device context manages an output device and is
accessed in Xbase* using instances of classes, like XbpPrinter() or XbpFileDev(). The
interaction between the presentation space and various device contexts is described in the
next section. This chapter discusses different presentation spaces. It begins with a description
of the features common to all presentation spaces.

16.1. Coordinate system and view port

This section covers the most important aspect of a presentation space: the coordinate system.
The presentation space determines the unit of measurc for the coordinate system used to
output graphics. The unit can be pixel, centimeter, inch or an arbitrary unit.

The presentation space determines the origin of the coordinate system (the point {0,0}) along
with the unit of measurement for the output. All graphic output is in relation to the coordinate
system of the presentation space and this in return relates to the coordinate system of the
output device. When graphic elements are output, two coordinate systems are to be
considered: the coordinate systems of the presentation space and the coordinate system of the
device context.

The coordinate system of the presentation space is predetermined by the page size. The page
determines the available space where graphic output can occur. Since all graphic output
occurs in the presentation space, the output uses the page coordinates of the presentation
space.

A presentation space displays the page in the device context. It uses what is called a
"viewport". The entire page of a presentation space is completely displayed in the viewport.
The viewport relates to the coordinates of the output device, meaning the size of the viewport
determines what is visible on the output device. The size of the page, however, determines
what can be displayed in the presentation space.

The page size of a presentation space as well as the size of the viewport can be set for a
presentation space. The size of the page is determined using the method :setPageSize() and
the size of the viewport is set using the method :setViewPort(). The page determines the

Alaska Xbase* * Basic Users Guide 241

Coordinate system and view port

display in the presentation space and the viewport determines the display on the output
device (in the device context). The following illustration shows the effect of different size
viewports with two pages of equal size and equal size output devices in two windows:

Viewport A is smaller than the window (viewport B > window)

The illustration shows two equal size windows with a drawing area of approximately

260 * 200 pixels (excluding the title bar) which both display the same image. The only
difference between the windows is the size of the viewport of their respective presentation
spaces. The gray area in the illustration represents the viewport. In the left window the
viewport is smaller than the window. In the right window the image spills out over the
window border, because the viewport is larger than the window. Everything that is outside
the window border of the right window would not be visible on the screen. The following
program code shows how the viewport can be influenced:

oPS1 := oWindowA:presSpace ()

oPSl:setViewPort ({20, 20, 240, 180}) // viewport < window
DisplayGraphic(oPS1) // draw image

oPS2 := oWindowB:presSpace ()

oPS2:setViewPort ({-20, -20, 280, 240}) // viewport > window

DisplayGraphic(oPS2)

In both windows, the image is drawn with the same coordinates. However, in the left window
the viewport of the presentation space is smaller than the output device (the window).
Correspondingly, the image is reduced. In the right window, the viewport is larger than the
output device. The display in the window is enlarged and parts of the image are cut off. The
gray area corresponds to the viewport. This program code illustrates that the coordinates of
the viewport are specified as coordinates of the window. Thus, the viewport in the left
window begins with the point {20,201}, which lies within the window. The viewport in the
right window, however, lies outside the window because it begins at the point {-20,-20}.

242

Alaska Xbase " - Basic Users Guide

Presentation Spaces for Graphic Output

A presentation space transfers graphic output through the viewport into the device context.
The viewport of a presentation space always relates to the coordinate system of the output
device. In the example, the output device is 260*200 pixels large and two different size
viewports are defined. In this way images can be scaled in any way in the display, because
the viewport determines the coordinates in the output device where the graphic output occurs.
If the viewport does not have the same size as the output device, a graphic transformation is
automatically performed during the output of the image to the device context.

Along with the viewport, the size of the abstract drawing area which represents the
presentation space can be set for a presentation space. This occurs using the method
:setPageSize() to define the size of the "page" in a presentation space. The page size affects
the dimensions of the coordinate system in a presentation space.

Page of the presentation space in the right window is 4x larger

The illustration again shows two equal size windows with a drawing area of 260*200 pixels,
and in both windows the same image is displayed. Here the page sizes of the two presentation
spaces are different:

oPS1 := oWindowA:presSpace()

oPSl:setViewPort({0, 0, 260, 200}) // viewport = window
oPS1:setPageSize({260, 200}) // page size = window
DisplayGraphic(oPS1) // draw image

oPS2 := oWindowB:presSpace()

oPS2:setViewPort({0, 0, 260, 200}) // viewport = window
oPS2:setPageSize({520, 400}) // page size > window

DisplayGraphic(oPS2)

In both cases, the viewport is the same size as the window. This means that everything drawn
in the presentation space also appears in the window. But the page size for the presentation
space in the right window is four times larger than in the left window. In the left window the
coordinate system of the presentation space extends from 0 to 260 in the x direction
(horizontal) and from O to 200 in the y direction (vertical), meaning the page is

Alaska Xbase* * Basic Users Guide 243

The intelligent presentation space - XbpCrt:presSpace()

260*200 pixels large. In the right window the x axis of the presentation space extends from 0
to 520 and the y axis from O to 400. Since the image in both cases is displayed at the same
coordinates in the presentation space, it is four times smaller in the presentation space of the
right window than in the left window.

The method :setPageSize() defines the size of the page or the dimensions of the coordinate
system in a presentation space. The method :setViewPort(), on the other hand, specifies the
device coordinates of the device context where output occurs. Both methods cause an
automatic transformation when the page size of the presentation space does not match the
size of the output device or when the viewport does not match the dimensions of the
coordinate system of the device context.

The two methods :setPageSize() and :setViewPort() offer two ways to scale a graphic. Both
methods can be used for output in a window. The method :setViewPort() can only be used for
screen output in a window and is limited to graphic output containing vector images. No
automatic scaling is performed in the display of raster images (bitmaps) or raster operations
(the function GraBitBlt()). The display of bitmaps or bitmap fonts always occurs in the
coordinates of the device context. Characters which are displayed with a bitmap font can not
be scaled and bitmaps must be explicitly scaled using GraBitBIt().

16.2. The intelligent presentation space -

XbpCrt:presSpace()

An XbpCrt window is created in the AppSys() procedure as the default application window.
It provides the Xbase* hybrid mode where text-oriented and graphic screen output can be
combined. This is the easiest way to develop programs for GUI.

As a special feature, the XbpCrt window already has a presentation space and serves as
device context for it. An XbpCrt window forms a unit with its presentation space and thus
allows easiest possible usage of the GraphicsEngine. The :presSpace() method of an XbpCrt
window returns its presentation space. This method exists only in the XbpCrt class. As long
as the application window is an XbpCrt window, Gra..() functions may be called without
passing a presentation space as the first parameter, since it defaults to
SetAppWindow():presSpace().

Besides of providing the default presentation space, an XbpCrt window has some inbuilt
intelligence which encapsulates complexities of the GUI that a programmer normally has to
deal with. The presentation space of an XbpCrt remembers' what is currently displayed in the
window. It buffers graphic output. This intelligence becomes obvious when an XbpCrt
window is covered temporarily by another window and then brought back into the
foreground. In this case, the covered part of the XbpCrt window must be refreshed or
repainted, respectively. To repaint itself, a window receives the xbeP_Paint event from the
operating system. It is normally a programmer's task to implement code for a window's

244

Alaska Xbase* * Basic Users Guide

The high speed presentation space - Xbp:lockPS()

repaint. This is not the case with XbpCrt windows. It processes xbeP_Paint messages on its
own and causes its presentation space to redisplay lost parts of the window's contents.

Due to its inbuilt intelligence, the presentation space of an XbpCrt window guarantees all
visible output to be redisplayed when the XbpCrt window is covered temporarily and brought
into the foreground again. Assume the following line of code:

GraLine(, (0,0}, {640,400})

This call to the GraLine() function draws a line, diagonal from the lower left to the upper
right corner. It remains visible even if other windows are clicked to the forground
temporarily. The line is redisplayed when the XbpCrt window regains focus, and no code
must be implemented to process the xbeP_Paint event.

16.3. The high speed presentation space -
Xbp:lockPS()

For common graphic output with Gra..() functions, a so called Micro presentation space is
used (Micro PS). The operating system itself has a buffer of Micro PSs and supplies them on
request to an application program. A Micro PS is optimized for high speed graphic output
and is reused by the operating system. When a window uses a Micro PS and graphic output is
done, the Micro PS is returned to the operating system where it is collected in a buffer for
further requests. Therefore, time-consuming allocation and release of memory does not occur
with a Micro PS.

A Micro PS can be used by all Xbase Parts subclassed from the XbpWindow class. It is
requested and returned by the :lockPS() method. An Xbase Part has exclusive access to this
Micro PS until it releases it with :unlockPS() and returns it to the operating system. On the
Xbase* language level, a Micro PS is represented by an object. It has the same methods as
the XbpPresSpace class, except of the :create(), :configure() and :destroy() methods. Due to
technical details of the operating system, a Micro PS can only be created by :lockPS() and
must be released with :unlockPS() (note: the XbpCrt class is not subclassed from
XbpWindow. Therefore, a Micro PS cannot be used by an XbpCrt window). The general
usage of a Micro PS follows this pattern:

OPS := oXbp:lockPS() // request Micro PS
Gra???(oPS, ...) // graphic output
oXbp:unlockPS(oPS) // release Micro PS

A drawing is displayed in a Micro PS in the same way as in the presentation space of an
XbpCrt window. However, due to its performance optimization, a Micro PS recognizes
neither graphic segments nor graphic paths. Graphic output is limited to simple Gra..()
functions. The complex functions GraSegOpen() and GraPathBegin() plus corresponding
functions for managing graphic segments and paths cannot be used with a Micro PS.
Furthermore, a Micro PS does no screen buffering. This requires an Xbase Part to react to the

Alaska Xbase* * Basic Users Guide 245

The complete presentation space - XbpPresSpace()

xbeP_Paint event. When using a Micro PS, code must be implemended for graphic output to
be displayed after repaint events. This code can be programmed either in a function that is
called by the :paint callback code block, or it must be programmed in the :paint() callback
method of a derived class. An example of using a Micro PS is found in
..\SAMPLES\XPARTS\MICROPS.PRG.

16.4. The complete presentation space -
XbpPresSpace()

Instances of the XbpPresSpace class are complete presentation spaces (PS). They can be used
by all functions of the GRA Engine. This includes complex graphic output that consists of
graphic segments and/or paths. If a complex graphic is to be displayed in Xbase Parts
subclassed from XbpWindow, an XbpPresSpace object must be connected to the window
device of this Xbase Part. If a drawing is displayed in an XbpDialog window, for example,
the output device is XbpDialog:drawingArea and the PS must be connected to its window

device:

oDialog := XbpDialog() :new() // Create an XbpDialog
oDialog:create(,, {0,0}, {600,400}) // window

oPS = XbpPresSpace () :new() // Create a PS

oDevice := oDialog:drawingArea:winDevice() // Get the device context
oPS:create(oDevice) // Link device context

// to PS
GraLine(oPS, {0,0}, {600,400}) // Display drawing

The example demonstrates different steps necessary for using a complete PS. The device
context (the output device) is returned by the :winDevice() method, and linked to the PS by
passing it to the :create() method. Then a drawing can be created in the PS using Gra..()
functions and the output appears in the XbpDialog window. Since the PS does not buffer
screen output, the code that creates a drawing must repeatedly be executed after xbeP_Paint
events.

246 Alaska Xbase * Basic Users Guide

Graphic output devices

17. Graphic output devices

In order to make the graphic output in a presentation space of a GUI application visible, the
presentation space must be linked to a device context. A device context contains all device
dependent information required for output of a drawing on an output device. In most cases
the display of graphics occurs in a window on the screen. A window represents a device
context. The GRA engine and its functions do not need to consider either a presentation
space or a device context as long as the output occurs on the screen in an XbpCrt window.
But the output of a graphic can also occur to a file or printer. In this case, a corresponding
device context must be associated with a presentation space. Output to a printer is extremely
device dependent. It requires the correct installation of a printer driver in the workplace shell.
A printer is used for output in Xbase** by an object of the XbpPrinter() class. XbpPrinter
objects prepare a device context for graphic output to a printer. If the output is to be sent to a
file, a decision must be made whether the file will contain a metafile or a raster image
(bitmap). Both types of files contain graphic data and there are object classes to manage the
file formats for both file formats. These classes are: XbpMetafile() and XbpBitmap(),
respectively.

17.1. The printer - XbpPrinter()

Objects of the XbpPrinter class are used for printed output. This requires a printer driver
appropriate for the physical printer be installed.

Basics for printing of graphics

The XbpPrinter class creates a connection to printer drivers, or printer objects, respectively,
installed on the system. If a printer object is not correctly configured, correct graphic output
to the printer from Xbase** is not guaranteed. Printer objects are identified in Xbase* by their
name which is displayed underneath a printer icon. An XbpPrinter object controls a printer
object and represents the device context for a presentation space in which graphic
information is displayed. To set up for printing an image, therefore, the printer device context
(XbpPrinter object) is associated with a presentation space. The following user-defined
function is suitable for this:

FUNCTION PrinterPS(cPrinterObjectName)
LOCAL oPS, oDC := XbpPrinter () :new()

oDC:create(cPrinterObjectName)
oPS := XbpPresSpace () :new()

oPS:create(oDC, oDC:paperSize(), GRA_PU_LOMETRIC)
RETURN oPS

Alaska Xbase* * Basic Users Guide 247

The printer - XbpPrinter()

The user-defined function PrinterPS() creates a presentation space associated with a printer
device context. It receives as a parameter the name of one of the printer objects installed on
the system as a character string and creates an XbpPrinter object that maintains the
connection to the printer object. In the function, a new presentation space is created, and the
XbpPrinter object is provided as the device context. The return value of the method
:paperSize() is used for the page size of the presentation space. This assures that the
presentation space and the device context have the same size coordinate systems. Since the
paper size is always returned by the method :paperSize() in the units of 1/10 millimeter, the
constant GRA_PU_LOMETRIC is specified in the call to oPS:create() to set the same units
in the presentation space.

The output of graphics on the printer can be performed using the function PrinterPS() as
shown in the following example:

OPS := PrinterPS() // presentation space with
// default printer object
oPS:device () :startDoc() // start print output

// (open spooler)
GraBox(oPS, {0,0}, {1000,1000}) // draw box

oPS:device () :endDoc () // end print output
// (close spooler)

These four lines of code show the basic procedure for printing graphics. A presentation space
associated with an XbpPrinter object (printer device context) must be available. In the
example, the method :device() returns the XbpPrinter object and begins the print output using
the call to :startDoc(). Generally, print jobs are spooled and :startDoc() opens the spooler.
All graphic output which occurs in the presentations space is sent to the spooler. The end of
the print job is signalled by the method :endDoc() which closes the spooler.

The function PrinterPS() shows how a presentation space for output on the printer is created,
and also shows the basic difficulty of graphic output: the coordinate systems of the output
devices "screen" and "printer" differ in things like the units of the coordinate system of the
two devices. The following program code illustrates this:

GraBox(oPS, {0,0}, {1000,1000})

This call to GraBox() draws a square with an edge length of 1000 units. How and where the
square is displayed depends on the device context associated with the presentation space oPS
and on the units for the coordinate system. The device unit for the screen is "pixel” and the
square would only partially be visible on screen except at extremely high screen resolution. If
a printer is the device context, the unit is 1/10 millimeter and the square would be displayed
with 10cm edge length which fits the most common paper formats.

248

Alaska Xbase ' * Basic Users Guide

Graphic output devices

Print text as graphics

The problem of different coordinate systems and units becomes especially obvious when
outputting text or characters. The function GraStringAt() draws a character string in a
presentation space. The font which is set in the presentation space is significant. There are
fonts which can only be output on the screen, others that can only be output on a printer, and
others which can be output on either device. When text is output on a printer, fonts which are
only for display on screen obviously can not be used. The following example program
illustrates this problem:

#include "Gra.ch"
#include "Xbp.ch"

PROCEDURE Main
LOCAL oWindowPS, oPrinterPS, oFont, aFontList
LOCAL i, imax, nY, nPointSize, cText, aSize

// presentation space for window and printer
oWindowPS := SetAppWindow () :presSpace()
oPrinterPS := PrinterPS()

// create font object
oFont := XbpFont () :new(oWindowPS)

// read list of available fonts
aFontList := oFont:list()

// output fonts on the printer
oPrinterPS:device() :startDoc()

imax = Len(aFontList)
ny = oPrinterPS:device() :paperSize()[2] - 100
nPointSize := 1

FOR i:=1 TO imax

// print only universally valid vector fonts
IF aFontList[i]:generic .AND. aFontList[i]:vector

oFont := aFontList[i]
oFont:nominalPointSize := ++nPointSize

// create text to print
cText := Str(nPointSize, 2) + "." + ;
oFont : compoundName

// set font for printer
GraSetFont (oPrinterPS, oFont)

Alaska Xbase* * Basic Users Guide 249

The printer - XbpPrinter()

// calculate size and new y position of the string
aSize := GraQueryTextBox(oPrinterPS, cText)
nY := nY - aSize[l,2]

// print string and release font
GraStringAt (oPrinterPS, {20,nY}, cText)
oFont :destroy ()

ENDIF
NEXT

oPrinterPS:device () :endDoc ()
RETURN

This example program prints the size and name of all vector fonts that can be output on the
printer. First, the presentation space of the application window is determined. The function
PrinterPS() creates a presentation space which is linked with a printer device context. An
XbpFont object is then generated to manage the fonts. The call oFont:list() returns an array
containing the font objects for all fonts that can be displayed in a window. The print output
then begins. The text to be printed is created in the FOR..NEXT loop. It is only printed when
the instance variables :generic and :vector of a font object in the array aFontList both contain
.T. (true). This is the prerequisite for fonts that can be displayed in a window and can also be
output to scale on a printer. Within the FOR..NEXT loop, font objects which fulfill this
prerequisite are passed using GraSetFont() to the presentation space oPrinterPS which is
associated with the printer device context. At this point in the example program, the
presentation space knows which font is to be printed and the metric data for the size of the
letters. Since the point size for a font is increased by one after each pass through the loop, the
y position of the character string must continually be adjusted to the height of the letters. The
height of the character string cText is determined using the function GraQueryTextBox().

The example program touches on all the problems that must be considered in programming
graphic output of text for a printer. Text is output in graphics mode using the function
GraStringAt(). In order for the characters to be printed on paper, the output must occur in a
presentation space linked with a printer device context (an XbpPrinter object). The font used
for the print output is set using an XbpFont object. The available fonts are determined using
the :fontList() method of a font object. In the example, all fonts which can be displayed in a
presentation space for a window are tested, since the presentation space of the application
window is provided to the XbpFont object (XbpFont():new(oWindowPS)). Only device
independent vector fonts (:generic and :vector are .T.) can also be used for printing. When
:generic and :vector are .T., this indicates that the font can be scaled correctly during
printing. The exact position where a character string cText is printed in the example program
must be calculated after each pass through the loop using the function GraQuerytextBox(),
since the point size of the font is continually changed.

Alaska Xbase " * Basic Users Guide

The metatile - XbpMetaFile()

Using XbpPrinter objects to output text or graphics can be summarized as follows:
- The printer object must be installed and configured correctly.

- The output must occur in a presentation space which has an XbpPrinter object as its device
context.

- The coordinate system of the XbpPrinter object is based on the unit of 1/10 millimeter.
- The font for the output of text is set using an XbpFont object.
- The size of a character string is determined by GraQueryTextBox().

These five points must always be considered when using XbpPrinter objects or sending
graphic output to a printer.

17.2. The metafile - XbpMetaFile()

Metafiles play a central role in storing and exchanging graphic data and drawings. Metafiles
store images in the same form they are drawn in the presentation space and allow the drawing
to be redisplayed as nccessary in the same or in another application. Images can be stored and
printed in the format of the metafile, they can be exchanged between two work stations in this
format, and they can be temporarily stored in the Clipboard while being transferred from one
application to another.

The sequence of graphic primitives used to create a drawing is stored in the metafile. This
includes the coordinates of the graphic primitives and their attributes. A metafile generally
contains a vector image, because it stores a sequence of graphic primitives that can be
"played back" again after the metafile is loaded in a presentation space. Metafiles are also
used to exchange drawings between two work stations. As long as the metafile contains a
drawing created using only graphic primitives, a drawing can be output on different screens
or printers. Raster images can also be stored in a metafile (see function GraBitBlt()), and in
this case the correct redisplay of a metafile on different output devices is not guaranteed since
it is device dependent.

Xbase* allows loading, displaying, storing and creating metafiles. For loading and
displaying, objects of the class XbpMetaFile() are used. They manage metafiles that are
already stored on a disk. The following lines of code show how metafiles are displayed in a
window:

Alaska Xbase ' * Basic Users Guide 251

The metafile - XbpMetaFile()

OMF

OMF':

oPS

OMF:

:= XbpMetaFile():new():create() // create metafile object
load("METAFILE.MET") // load metafile
:= SetAppWindow () :presSpace () // get presentation space
// from the window
draw(oPS) // redisplay the contents of the

// metafile in presentation space

This procedure is designed to load existing metafiles into an Xbase* application. But it is
also possible to store graphic output created by an Xbase** application in a metafile. To
accomplish this, an XbpFileDev object must be created. It represents the device context
where the graphic output of the Gra...() functions is recorded. Example:

PROCEDURE Main

LOCAL oPS, oDC, oMF

SetColor("N/W") // £ill window pale gray
CLS
oDC := XbpFileDev():New():Create() // create device context

// create presentation space
oPS := XbpPresSpace():New():Create(oDC) // and combine with DC

GraBox(oPS, {10,110}, {400,100}) // graphic output
GraStringAt (oPs, {20,50}, ;
"Image will be stored in metafile™")

oPS:configure () // detach device context

OMF := oDC:metaFile() // create XbpMetaFile object

oDC:destroy () // release device context

IF File("Test.met") // assure that no TEST.MET
FErase("Test.met") // file exists

ENDIF

OMF:save("Test.met") // save image in file

WAIT "Metafile is created, press key..."

OMF:= XbpMetaFile():new():create() // new MetaFile object

OMF:load("Test.met") // load file

oPS:= SetAppWindow () :presSpace /() // get PS from window

OMF:draw(oPS) // output in this PS

WAIT // wait for keypress
RETURN

Alaska Xbase * Basic Users Guide

The raster image - XbpBitmap()

In this example, an XbpFileDev object is created as a device context and associated with a
presentation space. The graphic output is performed in this presentation space. When the
output is completed, the device context is detached from the presentation space using a call to
the :configure() method of the presentation space. The XbpFileDev object is now able to The
method :save() saves this graphic information in a new metafile.

17.3. The raster image - XbpBitmap()

A raster image (bitmap) contains graphic information in the form of pixels. All the pixels in a
bitmap that are required to display the image are saved. The XbpBitmap class provides the
ability to create and display bitmaps. Raster images saved in a file are connected to an
executable file as a resource and can be identified, loaded and displayed using an XbpBitmap
object based on the numeric resource ID. Using XbpBitmap objects in this way starts with the
declaration of a bitmap file (BMP file) as a resource within an RC file. For example:

/* Type of resource Resource ID File name */
ICON 1 = "\XPP\RESOURCE\XPPPMT.ICO"
POINTER 2 = "\XPP\RESOURCE\XPPPOINT.PTR"
BITMAP 2000 = "\XPP\BITMAP\PHOTO.BMP"

If this resource file is linked to the executable file by RC.EXE, an XbpBitmap object can
load and display the resource 2000. This is done in the following example:

PROCEDURE Main
LOCAL oBMP, oPS

SetColor("N/W")
CLS

// get presentation space from XbpCrt window
oPS := SetAppWindow () :presSpace()

// create XbpBitmap for this PS
OBMP:= XbpBitmap():new():create(oPS)

// load bitmap
oBMP:load(NIL, 2000)

// display bitmap in the PS
oBMP:draw(oPS, {50,100})

WAIT
RETURN

Alaska Xbase* * Basic Users Guide 253

The raster image - XbpBitmap()

Before an XbpBitmap object can be created, the presentation space and its device context
must exist that will be used for output of the raster image. In the example, output occurs in
the presentation space of an XbpCrt window and this represents the output device. The
presentation space must be specified in the call to the method :create() which prepares the
XbpBitmap object for the display on the screen. The raster image from the PHOTO.BMP file
with the resource ID 2000 is then loaded using the method :load() and displayed in the
presentation space of the window using :draw().

An XbpBitmap object is also used if a raster image is to be temporarily created in main
memory. The methods :presSpace() and :make() are provided for this situation. An
XbpBitmap object is associated with a presentation space using :presSpace(). Graphic output
can then occur directly in the raster image, and is not visible on the screen. After an
XbpBitmap object has received its own presentation space using the method :presSpace(),
the size of the raster image must be specified using the method :make(). The memory for
screen information (pixels) is then allocated. Graphic output can then occur in the
presentation space of the bitmap.

The most important area for this use of XbpBitmap objects is in buffering graphic mode
screen output. The entire display in a window or a section of a window can be stored as a
raster image of an XbpBitmap object and redisplayed at a later time. Graphic information
from the presentation space of a window is copied to the presentation space of an XbpBitmap
object using the function GraBitBIt(). This is shown in the following example in the code for
the user-defined function GraSaveScreen():

PROCEDURE Main
LOCAL oPS, oBitmap

// get presentation space from the XbpCrt window
oPS := SetAppWindow () :presSpace()

// draw box
GraBox(oPS ,{10,10}, {100,100})

// save box
oBitmap := GraSaveScreen(oPS, (10,10}, {91,91})

// delete display in the window again
CLS
WAIT "Box is saved"

GraRestScreen(oPS, {10,10}, oBitmap)
WAIT "Box is redisplayed"
RETURN

FUNCTION GraSaveScreen(oSourcePS, aPos, aSize)
LOCAL oBitmap := XbpBitmap():new() :create(oSourcePS)

Alaska Xbase - Basic Users Guide

The raster image - XbpBitmap()

LOCAL oTargetPS := XbpPresSpace():new():create()
LOCAL aSourceRect[4], aTargetRect

I

aSourceRect [1] aSourceRect [3] := aPos[1]
aSourceRect [2] aSourceRect [4] := aPos[2]
aSourceRect [3] += aSize[l]
aSourceRect [4] += aSize[2]

aTargetRect := {0, 0, aSize([l], aSize[2]}

oBitmap:presSpace(oTargetPS)
oBitmap:make(aSize[l], aSize[2])

GraBitBlt(oTargetPS, oSourcePS, aTargetRect, aSourceRect)
RETURN oBitmap

The function GraSaveScreen() receives the presentation space of a window in the parameter
oSourcePS. This contains the graphic information to be saved by copying it into the
presentation space oTargetPS. An XbpBitmap object is created as an output device which is
suitable for output on the screen (oSourcePS is passed to :create()). For the XbpBitmap
object to be able to save graphic output, it needs its own presentation space, which is passed
to the object using the method :presSpace(). The newly created presentation space is
referenced by oTargetPS. The size of the raster image is specified in :make(). The size
corresponds to the parameter aSize which defines the dimensions of the screen section to be
saved in the x direction and y direction. Finally, the function GraBitBlt() copies the pixels
from the presentation space of the window into the presentation space of the XbpBitmap
object.

The user-defined function GraRestScreen() is used to redisplay the saved section of the
screen. The raster image managed by an XbpBitmap object is redisplayed in the presentation
space of a window. Calling the method :draw() is sufficient to accomplish this task:

FUNCTION GraRestScreen(oTargetPS, aPos, oBitmap)
oBitmap:draw(oTargetPS, aPos)
RETURN NIL

An XbpBitmap object needs a presentation space where the raster image managed by the
object is output. When a bitmap is attached as a resource to an executable file, calling the
method :load() is sufficient to allow display of the raster image. This method implicitly
requests a presentation space for the XbpBitmap object. If, however, a raster image is to be
created (during screen buffering, for example), the XbpBitmap object must have its own
presentation space which is provided to the object by the method :presSpace(). This method
must be executed before the call to :make(). :make() defines the dimensions for a raster
image and the memory required to hold all the pixels of the raster image. The required
memory can only be determined when a presentation space associated with a device context
is provided.

Alaska Xbase* * Basic Users Guide 255

Using windows as output devices

17.4. Using windows as output devices

In the discussion of windows serving as output devices it is necessary to distinguish an
application window (as provided by the XbpCrt and XbpDialog classes) from all other Xbase
Parts having a visual representation. These, of course, are windows as well. The easiest way
to achieve graphic output is by using an XbpCrt window. It serves as device context for its
specialized presentation space and performs buffered screen output. Therefore, Gra..()
functions can be used to draw in an XbpCrt window without the necessity of reacting to the
xbeP_Paint event. This event is created by the operating system when a window needs to
(partially) repaint itself.

Since an XbpDialog window does not buffer screen output, it must react to the xbeP_Paint
message if Gra..() functions are used to draw in the window. The same is true for all other
Xbase Parts. Regarding screen output, an XbpDialog window does not differ from a
pushbutton or an XbpStatic object. The only difference is that an XbpDialog window is a
compound object and drawing must be done in the drawing area below the title bar of the
window (XbpDialog:drawingArea). In an XbpStatic element, for example, screen output
appears in the object itself.

In order to enable an Xbase Parts to react to the xbeP_Paint event, a code block must be
assigned to the :paint instance variable. This code block must call a routine where graphic
output is implemented. As an alternative, a user-defined class can be derived from an Xbase
Part. In this case, the :paint#() method must be overloaded and code for graphic output must
be implemented in this method. Either possibility requires a presentation space to be
associated with the Xbase Part when Gra..() functions are called. This can be a Micro
presentation space returned by the :lockPS() method, or an XpbPresSpace object which is
linked to the device context of the Xbase Part. It is the return value of the :winDevice()
method.

The different aspects of graphic output in windows, or Xbase Parts, are illustrated in the
example program CHARTS.PRG which is located in the .\SOURCE\SAMPLES\GRAFIC
directory. This program draws a simple line chart by connecting a set of points with lines
using GraLine():

// x and y values for a line chart in the range 0-300

avalues := ;

{ { 30, 184},
{ 60, 843},
{ 90, 1443, ;
{120, 254}, ;
{150, 170}, ;
{180, 235}, ;
{210, 289}, ;
{240, 190}, ;
{270, 152},

o

Alaska Xbase* * Basic Users Guide

Using windows as output devices

{300, 36} }
LineChart(, aValues)

PROCEDURE LineChart(oPS, aPoints)

GraPos(oPS, {0,0})

AEval (aPoints, {|aPos| GralLine(oPS, , aPos)})
RETURN

This code would already work if an XbpCrt window was being used for display. The
procedure LineChart() simply receives an array of values specifying xy coordinates for the
points to be connected with lines. However, the CHART.PRG example program uses an
XbpDialog and an XbpStatic object for display.

Output of the sample program CHART.PRG

The program draws the line chart first in the XbpDialog window and then in reduced size in
the XbpStatic object (frame). The program code that displays the XbpDialog is given below.
It consists of creation of the window, the definition of the :paint code block, display of the
window and an event loop:

// Create window hidden

oDlg := XbpDialog():new(,,{10,10},{400,400},,.F.)
oDlg:title := "Line chart"

oDlg:create()

Alaska Xbase* * Basic Users Guide 257

Using windows as output devices

// Define :paint code block

oDlg:drawingArea:paint := ;
{Impl,mp2,o0bj| mpl := obj:lockPS(), ;
LineChart (mpl, avValues), ;
obj:unLockPS(mpl) }

// Display window
oDlg:show()

// Process events
DO WHILE nEvent <> xbeP_Close
nEvent := AppEvent(@mpl, @mp2, @GoXbp)
oXbp:handleEvent (nEvent, mpl, mp2)
ENDDO

The :paint code block must be assigned to the drawing area of the XbpDialog object
(oDlg:drawingArea) because it displays the drawing. The code block calls the LineChart()
procedure which draws the chart. Evaluation of the code block, however, takes place in the
:handleEvent() method when the xbeP_Paint event is returned from AppEvent(). The
following steps lead to the display of the line chart:

Calling oDlg:show() creates an xbeP_Paint event in the event queue
AppEvent () returns xbeP_Paint and oXbp contains oDlg:drawingArea
oXbp:handleEvent (xbeP_Paint, mpl, mp2) evaluates the :paint code block

Eval(oXbp:paint, mpl, mp2, oXbp) displays the line chart

The final result of the xbeP_Paint event is that oDIg:drawingArea is passed to the :paint
code block as third parameter. Inside the code block, a Micro PS is requested using :lockPS()
which gets passed together with aValues to the LineChart() procedure. Calling a drawing
routine in this way via the :paint code block also guarantees that the procedure is executed
again when the window is covered temporarily by another one and regains focus. In this case,
the operating system creates a new xbeP_Paint event and the :paint code block is evaluated again.

Displaying the line chart in the XbpStatic object follows the same logic: LinChart() is called
from the :paint code block. But instead of a Micro PS, an XbpPresSpace object is used which
is linked to the window device context of the XbpStatic object:

// Create static frame inside oDlg:drawingArea

oXbp := XbpStatic():new(oDlg:drawingArea,, {270,250}, (80,80})
oXbp:type := XBPSTATIC_TYPE_RAISEDBOX

oXbp:create()

// Link presentation space to window device
oPS := XbpPresSpace() :new()
oPS:create(oXbp:winDevice(), {310,310})

(8]

Alaska Xbase* * Basic Users Guide

Output to window and printer - WYSIWYG

// Set viewport to the size of the frame
oPS:setViewPort({0,0,80,80})

oXbp:paint := {|| LineChart(oPS, avValues) }

The line chart is drawn inside the XbpStatic object at the exact same coordinates as in the
XbpDialog object. The reason why it is completely visible is given by page size and viewport
of the presentation space. The page is large enough to display all points (310*310 pixel size
vs. range of 0-300). The page is scaled to the viewport which is as large as the static frame
(80*80 pixel). Therefore, the chart is reduced in size but completely visible.

17.5. Output to window and printer - WYSIWYG

A presentation space contains all device-independent information of a drawing. It can be
linked to different output devices and therefore, a drawing can be displayed in a window or
output to a printer. Depending on the device context a presentation space is linked to, printer
output can be previewed in a window. In order to comply with the WYSIWYG rule (What
You See Is What You Get), a drawing must be displayed in the window in correct scale. The
proportions of a drawing displayed in a window must be the same as on paper after printing.

Displaying printer output in a window in correct scale involves three different levels of
abstraction: one presentation space and device contexts for both window and printer. In
addition, the device contexts for the two output devices have different units of measurement
for their coordinate system. A window displays a drawing based on pixel while a printer uses
units of 1/10th of a millimeter.

Window Device Presentation Space Printer Device

CHN A4 Format
2100 x 2570 ', inm

Previewing printer output in a window

Alaska Xbase * Basic Users Guide 259

Output to window and printer - WYSIWYG

This illustration is based on the example program PREVIEW.PRG. It demonstrates various
aspects for correctly scaled output on different devices. The program lists database records in
a window and can print them. The contents of database fields are drawn with the function
GraStringAt().

On the left of the illustration, the application window is shown which is created by the
example program. Database records are displayed in this window by an instance of the
user-defined XbpPreview class, implemented in the example program. Its size is 270 x 380
pixel. On the right side of the XbpPreview object, there are pushbuttons that enlarge

(zoom ++), reduce (zoom --) or print the display. If the display is enlarged, it can be scrolled
by means of two scroll bars. The XbpPreview object provides the device context for screen
output (window device).

A sheet of paper is shown on the right of the illustration. It represents printed output (the
printer device) and has A4 format. This means its size is 2100 x 2970 units, one unit being
1/10th of a millimeter.

Between window device and printer device, a presentation space is displayed. Depending on
the device context this presentation space is linked to, the output appears either in the
window or on paper. The different aspects resulting from WYSIWYG display are
demonstrated in PREVIEW.PRG.

Scaling

An automatic scaling of the drawing and the transformation of the coordinate systems of both
output devices is done by the presentation space. It defines unit and size of the coordinate
system. For printed output, the coordinate system must be dimensioned according to the
paper size. It can be determined with the :paperSize() method of an XbpPrinter object. This
method returns an array containing the size of a sheet of paper in 1/10th mm units. For some
printers, especially laser printers, the size must be adjusted since there are margins that
cannot be printed on.

Printer coordinates are used for drawing in the presentation space. This means that the page
size of the presentation space is identical to the printable area on a sheet of paper. In order to
display the complete page of the presentation space in the window, the viewport must be set
to the window's size. In this case, window coordinates are used (pixel). If page size and
viewport are dimensioned properly, all graphic output drawn at printer coordinates appears in
correct scale in a window.

In addition to viewport and page size, it is necessary to select a vector font in the presentation
space. This is required for correct scaling of text since bitmap fonts cannot be scaled.
Therefore, a presentation space must be prepared in several steps to achieve a WYSIWYG
preview of printed output. These steps are discussed in the following code (note: it is
assumed that the variable oPrinter references an XbpPrinter object and oWindow references
an Xbase Part):

260

Alaska Xbase' * Basic Users Guide

Output to window and printer - WYSIWYG

// Determine page size
aSize := oPrinter:paperSize()

// Deduct margins that can not be printed on
aSize := { aSize[5]-aSize[3], aSize[6]-aSize[4] }

// Link presentation space with window device context
// but use printer coordinates and units

oPresSpace := XbpPresSpace() :new()
oPresSpace:create(oWindow:winDevice(), ;
aSize P

GRA_PU_LOMETRIC)
// Set viewport to the size of the window
aSize := oWindow:currentSize()

oPresSpace:setViewPort({0, 0, aSize[l], aSize[2] })

// Select vector font for presentation space

oFont := XbpFont () :new(oPresSpace)
oFont:familyName := "Helvetica"
oFont :nominalPointSize := 12

oFont:create()
oPresSpace:setFont (oFont)

When a presentation space is prepared in this way, Gra..() functions can be used to produce
graphic output. Display in the window then corresponds to printed output and appears in
correct scale. However, screen output is extremely reduced in size compared to printed
output.

Zooming

If details of a print preview are to be checked, the display in the window must be enlarged
(zoomed). This is achieved by enlarging the viewport of the presentation space. In this case,
only a part of the viewport is visible in the window. Assume the following code:

// Get current viewport size (e.g. { 0, 0, 270, 380 })
aViewPort := oPresSpace:setViewPort ()

// Double height and width of the viewport
// Its size is now 540 x 760 pixel
avViewPort [3] *= 2

aViewPort[4] *= 2

// Set new viewport in presentation space
oPresSpace:setViewPort (aViewPort)

The window is assumed to be 270 pixel wide and 380 pixel high. If the viewport is enlarged
to double width and height (540 x 760 pixel), the window displays only the lower left quarter

Alaska Xbase' * Basic Users Guide 261

Output to window and printer - WYSIWYG

of the viewport. Since the window's size is unchanged, only one-quarter is displayed instead
of the entire drawing. This part of the drawing appears four times enlarged.

Scrolling

As soon as the viewport is larger than the window, only a part of a drawing is visible and the
rest is clipped. To see different parts of the drawing, it must be scrolled inside the window.
Scrolling is done by changing the origin of the viewport relative to a window's origin. The
origin of the viewport is set to negative coordinates:

// Get current viewport size (e.g. { 0, 0, 540, 760 })

aViewPort := oPresSpace:setViewPort ()
avViewPort[1] -= 270
aViewPort[2] -= 380
aViewPort [3] -= 270
aViewPort [4] -= 380

oPresSpace:setViewPort (aViewPort)

In this example, the viewport of the size 540 x 760 pixel is set to the coordinates
{-270,-380,270,380}. This is relative to the point {0,0} in the window. The viewport origin
has moved down left while its size is unchanged. As a result, the upper right part of the
drawing becomes visible in the window.

If the viewport origin is set to negative coordinates, all parts of an enlarged drawing can be
viewed in a window. In the PREVIEW .PRG example program, this is accomplished by using
two scroll bars so that the drawing can be scrolled with mouse clicks.

Printing

When a presentation space is created using printer coordinates, a drawing visible on screen
can be printed easily by exchanging the device context of the presentation space. For
printing, an XbpPrinter object is used as device context and the drawing must be redisplayed
for appearance on paper. The following steps are necessary to print a drawing:

// Save current viewport
aViewPort := oPresSpace:setViewPort ()

// Link presentation space with printer device
oPresSpace:configure(oPrinter)

// Open the spooler
oPrinter:startDoc ()

// Redisplay the drawing
Gra..(oPresSpace)

// Close the spooler

262

Alaska Xbase ' * Basic Users Guide

Output to window and printer - WYSIWYG

oPrinter:endDoc ()

// Link presentation space to window device
oPresSpace:configure(oWindow:winDevice())

// Reset viewport for window
oPresSpace:setViewPort (aViewPort)

The device context is exchanged by passing a corresponding object to the :configure()
method of the presentation space. This switches graphic output from screen to the printer.
Since the viewport is lost when devices are changed, it must be saved and reset.

Alaska Xbase' * Basic Users Guide 263

Error Handling Concepts

18. Error Handling Concepts

In addition to code that addresses the problem that the program is designed to solve, code to
handle error conditions is another important area of program development. In complex
programs errors or exception conditions always occur, since no single programmer can test
every possible combination in an extensive application, and no one can foresee every one of
the large number of exception conditions which are possible. Potential error conditions must
be considered when the application is being developed. Various strategies can be used in
order to rectify potential errors within a program. There is no universal strategy. This chapter
illustrates various approaches to planning for error conditions within a program during
application development.

18.1. Offensive and defensive error handling

There are two "philosophies” in planning for handling error conditions during program
development: one assumes that everything might be wrong and the other assumes that
everything is right. These strategies have significant consequences on how procedures,
user-defined functions, and methods are written, especially those that can receive arguments.
Passing arguments to routines is a critical area for error handling because it frequently leads
to errors, especially when individual arguments must have a specific data type or must lie
within a specific range of values. A simple example is a user-defined function which
performs a simple division operation.

FUNCTION Divide (nDividend, nDivisor)
RETURN nDividend / nDivisor

This function presumes that both parameters are always of the numeric data type and that the
parameter nDivisor is never equal to zero. If the programmer can guarantee these conditions,
the function is acceptable as it is shown here. However, one must normally assume that
incorrect arguments that could lead to a program error may be passed. Such a case can be
avoided if the parameters are tested.

FUNCTION Divide(nDividend, nDivisor)
LOCAL nResult := 0

IF Valtype(nDividend) + Valtype(nDivisor)=="NN" .AND. ;
nDivisor <> 0

nResult := nDividend / nDivisor

ENDIF
RETURN nResult

264 Alaska Xbase " - Basic Users Guide

Offensive and defensive error handling

In this example, the function covers all possible error conditions. It tests whether both
parameters are of numeric data type and avoids division by zero. In this form, the function
Divide() follows the defensive strategy of error handling because the function avoids all
potential sources of error. If an incorrect parameter is passed, the function simply substitutes
a numeric result (the value zero).

The strategy of avoiding the source of all possible errors guarantees stable programs, but can
lead to a significant reduction in the runtime performance of programs. In a carefully
programmed application errors do not occur often. The frequent testing for potential errors is
not generally required and these tests use significant time.

Thus, the defensive strategy of error handling has a negative effect on the runtime
performance of a program. This is because tests are frequently executed that are seldom
necessary and are often superfluous. It is more advantageous to use an offensive error
handling strategy which avoids superfluous test routines and assumes that no error will occur.
This philosophy is basic in a 32bit operating system and should also be followed when
programming using Xbase**.

The control structure BEGIN SEQUENCE...ENDSEQUENCE, in connection with the
function ErrorBlock() and an error handling code block, form the basis for offensive error
handling. The example function Divide() appears as follows using an offensive strategy:

FUNCTION Divide(nDividend, nDivisor)
LOCAL nResult, bError

bError := ErrorBlock({|le| Break(e)}) // install new error
// handling code block
BEGIN SEQUENCE

nResult := nDividend / nDivisor // normal program code
RECOVER

nResult := 0 // error handling code
ENDSEQUENCE
ErrorBlock(bError) // re-install old error

// handling code block
RETURN nResult

In this example, no test is performed on the passed parameters. Instead, it is assumed that the
passed parameters always have the correct values and data types. The function contains two
kinds of program code embedded in the BEGIN SEQUENCE ... ENDSEQUENCE structure.
There is the program code which processes the normal, error free condition and additional
program code that is executed if an error occurs. When an error occurs at runtime, the
program code after the RECOVER statement is executed. Otherwise, this part of the function
is skipped. In order for the RECOVER code to be executed, a local error handling code block
is installed using the function ErrorBlock(). This code block calls the function Break() and is
executed only if an error occurs. The function Break() interrupts the normal program
execution and causes the program flow to continue after the RECOVER statement.

Alaska Xbase* * Basic Users Guide 265

Use of error objects

Although the function Divide() is not really needed, it demonstrates the two basic
"philosophies" of runtime error handling. Offensive error treatment is generally advantageous
since it provides improved runtime performance. For the programmer, offensive error
handling means that, from inception of the development process, program code is organized
into two parts. These parts are embedded in a BEGIN SEQUENCE.. ENDSEQUENCE
structure. One part contains the normal program logic. The other part captures error
conditions and returns the program to a stable condition assuring a continued, uninterrupted
run. Offensive error handling protects the main program code, which greatly improves the
quality and maintainability of the program. All errors can be trapped with offensive error
handling, which is not possible using the defensive strategy unless all possible conditions are
explicitly tested. It should be noted that there is no universal rule to use in determining what
program conditions are defined as errors and when simple error handling should be
performed. The simple error conditions, like division by zero, are the exception rather than
the rule. When in doubt, a subjective decision must be made concerning what constitutes an
error and what form of error handling will be used. In many error conditions, it makes sense
not to attempt error recovery, but to simply abort the program. In most error conditions,
program termination is the default reaction of the error handling system of Xbase** (see the
file ERRORSYS.PRQG).

18.2. Use of error objects

Objects containing information about runtime errors play a central role in the Xbase** error
handling system. Error objects are simple objects containing instance variables but no
methods. An error object is automatically created when an error occurs and information about
the error is contained in this object's instance variables. After an error object is created, it is
passed to the error code block that was installed using the function ErrorBlock(). The error
code block can call any functions or procedures and pass on to them the error object received
by the code block. Using the function ErrorBlock(), user defined functions that use the
information from an error object can be called to perform error handling when runtime errors
occur.

In order to use the information in an error object, a parameter must be defined in the error
code block. In case of an error, the parameter receives an error object that can be passed on
to any function. The simplest case is passing the error object to the function Break() which
continues the program flow after the RECOVER statement. This is implemented in the
following program example. The program tests the operating readiness of drives. The test
occurs in the user-defined function IsDriveReady() called from Main(). In the procedure
Main(), a drive letter can be entered and this drive is tested for readiness.

266

Alaska Xbase ' * Basic Users Guide

Use of error objects

* ok ok ok ok ok ok okk ok ok ok ok ok

PROCEDURE Main // test drives for
LOCAL cDrive := "C" , nReady // readiness
CLS // clear screen
DO WHILE LastKey () <> 27 // terminate with ESC key

@ 0,0 SAY "Drive to test:" GET cDrive // enter drive

READ

nReady := IsDriveReady(cDrive) // test drive

@ 10,10 // position cursor and

// clear screen

IF nReady == 0 // display message
@ 10,10 SAY "Drive ready"

ELSEIF nReady == -1
@ 10,10 SAY "Drive not ready"

ELSE
@ 10,10 sSAY "Drive not found or invalid"

ENDIF

ENDDO
RETURN

#define DRIVE_NOT_READY // OS error code

N
-

Kk Ak KKKk Kk k ok ok kkkkdkkokkkkkokokkokkodkkkxk

FUNCTION IsDriveReady(cDrive) // Is drive ready ?
LOCAL nReturn := 0
LOCAL cOldDrive := CurDrive() // save current drive

LOCAL bError ErrorBlock({lel| Break(e) })

LOCAL oError

1

BEGIN SEQUENCE

CurDrive(cDrive) // change drive
CurDir(cDrive) // read current directory
RECOVER USING oError // error has occurred

IF oError:osCode == DRIVE_NOT_READY

nReturn := -1 // drive not ready
ELSE
nReturn := -2 // drive not available
ENDIF // or invalid
ENDSEQUENCE

Alaska Xbase* * Basic Users Guide 267

Use of error objects

ErrorBlock(bError) // reset error code block
CurDrive(cOldDrive) // and drive

RETURN nReturn

The user-defined function IsDriveReady() includes some important techniques for error
handling. It starts by assigning the error code block {lel Break(e) } which is executed if an
error occurs. The code block passes an error object to the function Break(). For example, an
error occurs when one of the characters "&/(123" is entered in Main() or when
IsDriveReady("K") is called and drive "K" does not exist.

The function Break() continues the program flow after the RECOVER statement. In the
example program, the RECOVER statement includes the USING option defining the variable
oError. This variable receives the parameter passed to Break(), in this case it is the error
object. The variable oError references an error object only after an error occurs. Otherwise it
contains the value NIL and the program code between RECOVER and ENDSEQUENCE is
not executed.

If an error occurs, an error object is automatically created and passed to the error code block.
This error object contains information about the error in the values of its instance variables.
Within the code block, the object is passed to the function Break() which branches to
RECOVER. The error object is finally assigned to the variable oError specified in
RECOVER USING. After an error occurs, the instance variables of the error object can then
be accessed by the program code between RECOVER and ENDSEQUENCE. In the
example, only the instance variable :0sCode is inspected because it contains the error code
for the errors that might occur during the test to determine the operating readiness of a drive
(osCode = Operating System Code). Testing the drive is done by using the operating system
which generates an error when a drive is not ready or does not exist. In the Xbase* error
handling system, the errors generated by the operating system are captured.

The function IsDriveReady() assigns the various return values in the error handling program
code. This program code is not executed when the drive to be tested is ready. In this case, the
essential program code contains only two lines. The function IsDriveReady() is a good
example of the strategy of offensive error handling, demonstrates how errors can be captured,
and shows how information about runtime errors can be used.

The most essential item for successful error handling is the error code block, which receives
an error object. The error object contains information about the error that occurred. The
program code for error handling appears between RECOVER and ENDSEQUENCE. The
RECOVER statement occurs between BEGIN SEQUENCE and ENDSEQUENCE and can
optionally receive a value as a parameter. The option RECOVER USING defines a variable
to be assigned the value of the argument passed to Break().

268

Alaska Xbase* * Basic Users Guide

Default error handling - ERRORSYS.PRG and XPPERROR.LOG

18.3. Default error handling - ERRORSYS.PRG
and XPPERROR.LOG

The default error handling of Xbase** is implemented in the ERRORSYS.PRG file. It
contains the function ErrorSys() which installs the default error code block at program
startup. When a runtime error occurs, information about the error is displayed on screen.
Depending on the error condition, the user can decide whether to ignore the error, retry the
last operation or terminate the program.

In case of program temination an error log can be created optionally which gets written to the
XPPERROR.LOG file. The error log contains important data about the error condition and
provides the developer with valuable information. The situation when the error occured can
be analyzed in detail which allows a programming error to be identified directly or helps to
localize the error using the Xbase* debugger. Information that may get listed in the error log
is too numerous to describe. Therefore an example of an error log is discussed below. It
explains how to interprete information contained in the log file. The example originates from
the MDIDEMO sample program which is part of the Xbase** installation.

ERROR LOG
Xbase++ version . Xbase++ (R) Version 1.10.153
Operating system : Windows NT 4. 0 Build 01381

-> VALTYPE:

L VALUE: .T.

-> VALTYPE: U VALUE: NIL

-> VALTYPE: C VALUE: Customer

-> VALTYPE: U VALUE: NIL

-> VALTYPE: U VALUE: NIL

-> VALTYPE: L VALUE: .F.
oError:canDefault : LT,
oError:canRetry : LT
oError:canSubstitute: .F.
oError:cargo : NIL
oError:description : Operating system error
oError:filename
oError:genCode : 40
oError:operation : DbUseArea
oError:osCode : 2
oError:severity 2
oError:subCode : 4
oError:subSystem : BASE
oError:thread : 1
oError:tries : 1

Alaska Xbase* * Basic Users Guide 269

Default error handling - ERRORSYS.PRG and XPPERROR.LOG

Called from STANDARDEH(155)
Called from (B)ERRORSYS(24)
Called from OPENCUSTOMER (230)
Called from CUSTOMER(27)
Called from (B)MENUCREATE(28)
Called from MAIN(46)

The error log begins with version information about Xbase** and the operating system. Two
main sections follow: the contents of the error object and the call stack. The call stack lists
the sequence of calls to functions, procedures or methods that has led to the error condition.
The function name is followed by the line number of the PRG file where the function is
called. In the example, the error log is initiated in line 155 of the StandardEH() function.
This function is called from a code block which is programmed in line 24 of ErrorSys(). Both
functions are part of the ERRORSYS.PRG file and implement the default error handling of
Xbase**. They do not contribute to a runtime error but are part of the call stack when the error
log is created. The runtime error occured in line 230 of the OpenCustomer() function which
is programmed in the MDICUST.PRG file. The call stack clearly identifies the program line
that raises the runtime error. It cannot display the name of the PRG file, only line number and
function name.

If the information contained in the error object is not sufficient to clearly identify a
programming error, the error situation can be analyzed easily with the Xbase** debugger. For
this, the application must be started from the debugger and a break point must be set on line
230 of the MDICUST.PRG file.

In this example, however, the error object provides sufficient information to identify the
error: the CUSTOMER.DBF file could not be found. The following code has raised the
runtime error:

USE Customer NEW

This line of code is translated by the preprocessor and the actual code executed at runtime
looks like this:

DbUseArea(.T., NIL, NIL, "Customer", .F.)

In its instance variable :operation, the error object contains a string with the name of the
failed operation or function, respectively, and the instance variable :args contains all
arguments or formal parameters passed to the function. The error log lists data types and
values of the arguments (VALTYPE and VALUE). The instance variable :description gives a
short description of the failed operation. In the example, the error is raised by the operating
system, not by the Xbase** application. This is also indicated by the instance variable
:0sCode which contains the value 2 in this case. If this instance variable contains a number
not equal to zero, then this is an operating system error code.

270

Alaska Xbase "+ Basic Users Guide

Default error handling - ERRORSYS.PRG and XPPERROR.LOG

Another important information is stored in the :genCode instance variable. It is the generic
Xbase** error code that corresponds to #define constants found in the ERRORSYS.CH file.
The number 40 shown in the example equals to the constant XPP_ERR_DOS and indicates
the error to be raised by the Disk Operating System.

Summary

The error log records the contents of an error object together with the call stack. The call
stack indicates WHERE a runtime error occured while the error object provides information
WHY it is raised. In many cases the contents of the instance variables :arg, :description,
:operation, :0sCode and :genCode are sufficient to clearly identify and resolve a runtime
error (please refer to the reference documentation for a description of other instance variables
of the error object).

Alaska Xbase' ' Basic Users Guide 271

Index

Index
A D
AIMPLIB.EXE, 86, 87 database, 91

open multiply, 218
alias name, 96 P il
DatabaseEngine, 104

Alias operator, 21 CDXDBE, 137
ALINK.EXE, 80 combining, 107
DBFDBE, 126
application window, 180 DELDBE, 119
FOXDBE, 133
AppSys(), 185, 191 NTXDBE, 136
APPSYS.PRG, 180 SDFDBE, 114
ARC.EXE, 88 database object, 109, 111, 132

Options. 90 DATA component, 104

AUTOEXECBAT, 8 DataDialog class, 204

AUTOXPP.BAT, 10 dataLink, 47, 202
DataRef, 188

B data validation, 214

background color, 186, 230 DBEDIT.PRG, 168

BITMAP.’ 88, 237, 253 DBESYS.PRG, 106
copying, 240
. DBFDBE, 126
breakpoint, 71 Configuration, 128
BROWSYS.PRG, 168 DBF file, 127 debugger, 65
command line, 72

monitor window, 71

C starting, 12, 65
callback slot, 174 declaring resources, 89
CALLSTACK, 270 DEF file, 85
CDXDBE, 137 DELDBE, 119

childList, 179 Configuration, 121

childList(), 47 dependencies, 74

command processor, 139 device context, 247

compiler, 63 DINO.BAT, 10

constants, 63 DLL file, 58, 77

compiler switches, 57 c.rea.ting, 83
linking, 81

compound DBE, 105 .
drawingArea, 186

CONFIG.SYS, 10

context menu, 221

272 Alaska Xbase ' * Basic Users Guide

Index

E

edit buffer, 188, 203
error handling, 264
error object, 266
event, 160, 173

export definitions, 85

F
field variables, 112, 143

FormDesigner, 41
context menu, 43
functional source, 45
object-oriented code, 49

FOXDBE, 133
Configuration, 134

Full text search, 15

G

Get reader, 166
GETSYS.PRG, 163

Get system, 164

graphical transformation, 238
graphic output in windows, 256
graphic path, 235

Graphic primitives, 226, 227
Attributes, 227

GraphicsEngine, 224
GUI application, 82, 180
GUI applications, 170, 191

H
HKEY_CURRENT_USER, 8

hybrid application, 182

I
ICON, 88

import library, 86

K
keyboard events, 178

L
life cycle, 170

linker, 60, 80;
Options, 60, 81

M

Macro operator &, 22
MAIN procedure, 25, 200
menu system, 194
Metafiles, 251

Micro presentation space. 245
mix attribute, 231

mouse coordinates, 161
mouse events, 159
Multi-tasking, 139
Multi-threading, 141

mutual exclusion, 152

N
notification, 207

NTXDBE, 137

o
online help, 193
ORDER component, 104

Alaska Xbase* * Basic Users Guide

273

Index

P

page size, 243
PARAMETERS, 21
parent-child relationship, 178
PBUILD.EXE, 73

PPO file, 61

#pragma, 23

preprocessor, 57
presentation space, 225, 241
presentation spaces, 246
printer, 247

printer device, 260

printing graphics, 248
Problem Description Reports, 16

ProjectBuilder, 73, 78;
Options, 78

project file, 73, 76

Q
Queue, 154

Quick reference, 15

R

raster image, 237
record locking, 212
record pointer, 102, 207
registry, 9

resource compiler, 88

runtime libraries, 19

S
Scaling, 260
Scrolling, 262

SDFDBE, 114
Configuration, 117
structure file, 116

segment, 233

SET COLLATION TO, 31
SET EXCLUSIVE, 30
settings of a DBE, 110
SET TYPEAHEAD, 26
Signal, 151

START, 139

SYNC method, 153

system timer, 146

T

Table of contents, 14
TBrowse, 168
technical support, 16
termination routine, 201

text mode application, 82;
VIO applications, 155

Thread, 142;
priority, 145;
subclassing, 148

A\

Validating data, 203
vector fonts, 250
vector image, 237
viewport, 241

VIO mode, 161, 180

274

Alaska Xbase + Basic Users Guide

Index

w

wait states, 150
window, 177
window device, 260
windows, 256

work area, 96, 207
work space, 99, 143
WYSIWYG, 259

X

Xbase Parts, 170, 187;
class hierarchy, 187;
event handling, 175

XbpCrt window, 180, 244
XbpDialog window, 183
XPF files, 27
XPPERROR.LOG, 269
XPP.EXE, 57
XPPFD.EXE, 41
XPPFILT.EXE, 85
XPPLOAD.EXE, 64
XPPRESOURCE, 90

z
Zero space, 101
Zooming, 261

Alaska Xbase* © Basic Users Guide

275

